当前位置: 首页 > news >正文

CS224W6.2——深度学习基础

在本文中,我们回顾了深度学习的概念和技术,这些概念和技术对理解图神经网络至关重要。从将机器学习表述为优化问题开始,介绍了目标函数梯度下降非线性反向传播的概念。

文章目录

  • 1. 大纲
  • 2. 优化问题
    • 2.1 举例损失函数
  • 3. 如何优化目标函数?
  • 4. 梯度下降
    • 4.1 对于SGD的一些概念
  • 5. 如何获得目标函数?
    • 5.1 反向传播
    • 5.2 非线性变换
    • 5.3 MLP
  • 6. 总结

1. 大纲

在这里插入图片描述

这篇我们主要讲第一部分深度学习的基础。

2. 优化问题

我们将机器学习问题、监督学习问题看作是优化问题:

在这里插入图片描述

我们需要学习这样一个映射函数:将输入 x x x映射为输出的预测标签 y y y

将这样的函数学习表述为一个优化过程

在这里插入图片描述

有两件重要的是:

  • 通过优化参数 Θ \Theta Θ,最小化损失函数 L \mathcal{L} L
  • 损失函数用来测量真实值与预测值之间的差距。

2.1 举例损失函数

交叉熵损失函数:

在这里插入图片描述

讨论多分类问题

比如5分类问题,表示5种颜色,我们用one-hot编码表示。

我们要在某种意义上对它进行建模,使用 f ( x ) f(x) f(x)这是将某个函数 g ( x ) g(x) g(x)经过 S o f t m a x ( ) Softmax() Softmax()函数,得到一个预测5分类的概率,这些概率之和为1。

现在要衡量这个预测的质量。

通过单点的交叉熵损失函数 C E ( y , f ( x ) ) CE(y,f(x)) CE(y,f(x))得到的值越小,就表示预测值与真实的one-hot值越接近。

然后将所有单点的损失相加就得到了总的损失 L = ∑ ( x , y ) ∈ T CE ⁡ ( y , f ( x ) ) \mathcal{L}=\sum_{(x,y)\in\mathcal{T}}\operatorname{CE}(y,f(x)) L=(x,y)TCE(y,f(x)),这是所有训练样本的真实值与预测值之间的总差异。

而我们想要的就是找到一个合适的函数 f ( x ) f(x) f(x)最小化真实值与预测值之间的总差异。

3. 如何优化目标函数?

在这里插入图片描述

经典的优化目标函数是通过梯度下降,所以梯度的概念很重要:

某个定点的梯度是一个方向,该方向是函数的最快增长速率。

现在,我们可以对损失函数进行“询问”,关于我的参数 Θ \Theta Θ,我应该朝着哪个方向?(梯度相反的方向)改变我的参数 Θ \Theta Θ使损失 L \mathcal{L} L减少最多

4. 梯度下降

在这里插入图片描述

上面是最基础的梯度下降版本,重复更新模型参数,直至收敛。

最基础的梯度下降有一些问题,所以后续提出了随机梯度下降(SGD):

在这里插入图片描述

传统的梯度下降每一轮迭代都需要计算所有点的梯度,计算量太大,而SGD只计算一部分。

4.1 对于SGD的一些概念

在这里插入图片描述

  • 首先是batch_size的概念,它是我们评估梯度数据的子集,(不是在整个训练数据集上评估梯度——GD,而是在训练集的一小部分——SGD),batch_size的大小是每一批次数据点的数量,通常我们喜欢更大的batch_size但更大的batch_size会使优化变慢
  • 其次是iteration的概念,SGD的一个迭代(iteration),是SGD的一个步骤,我们在给定的batch_size的数据点上评估梯度。迭代次数是:数据集大小/batch_size。
  • 最后是epoch的概念,它是对数据集的全面遍历

这种小批量训练的思想是深度学习的核心。

5. 如何获得目标函数?

对于简单的模型:

在这里插入图片描述

5.1 反向传播

在这里插入图片描述

反向传播的概念:使用链式法则,来传播中间步骤的梯度,最终获得关于模型参数损失的梯度。

举例:

在这里插入图片描述

在这里插入图片描述

5.2 非线性变换

目前为止只使用了简单的两层神经网络,而 W 2 W 1 W_2W_1 W2W1可以表示为另一个矩阵,它依然可以表示为一层的线性变换。

在这里插入图片描述

这意味着,我们通过两侧的线性变换依然得到的是一个线性模型,没有获得更多的表达能力。

而如果我们引入非线性变换,实际上增加了模型的表示能力。这将我们引向多层感知机的概念(MLP)。

5.3 MLP

在这里插入图片描述

6. 总结

在这里插入图片描述

相关文章:

CS224W6.2——深度学习基础

在本文中,我们回顾了深度学习的概念和技术,这些概念和技术对理解图神经网络至关重要。从将机器学习表述为优化问题开始,介绍了目标函数、梯度下降、非线性和反向传播的概念。 文章目录 1. 大纲2. 优化问题2.1 举例损失函数 3. 如何优化目标函…...

Linux c/c++服务器开发实践

在Linux C开发环境中,通常有两种方式来开发多线程程序,一种是利用POSIX多线程 API函数来开发多线程程序,另外一种是利用C自带线程类来开发程序。 常见的与线程相关的基本API函数: API函数含义pthread_create创建线程pthread_exi…...

2023年11月在线IDE流行度最新排名

点击查看最新在线IDE流行度最新排名(每月更新) 2023年11月在线IDE流行度最新排名 TOP 在线IDE排名是通过分析在线ide名称在谷歌上被搜索的频率而创建的 在线IDE被搜索的次数越多,人们就会认为它越受欢迎。原始数据来自谷歌Trends 如果您相…...

视频批量剪辑:视频嵌套合并实战指南,剪辑高手速成秘籍

随着社交媒体的兴起,视频制作的需求越来越广泛。无论是个人用户还是专业团队,都需要对视频进行剪辑以符合其需求。而在这个过程中,批量剪辑视频的能力就变得至关重要。视频批量剪辑是指在一次操作中处理多个视频文件的剪辑。通过使用专业的视…...

每天一点python——day66

#每天一点Python——66 #字符串的分隔 #如图: #方法①split()从左开始分隔,默认空格为分割字符,返回值是一个列表 shello world jisuanji#首先创建一个字符串 list1s.split() print(list1)#输出结果是:[hello, world, jisuanji]注…...

搭建产品帮助中心其实很简单,方法都在这了!

网站帮助中心是一个为用户提供支持和解答问题的重要资源。它不仅可以提高用户体验,还能减少用户问题反馈的数量。通过提供清晰、易于理解的文档和指南,帮助中心可以帮助用户更好地了解产品或服务,并解决他们在使用过程中遇到的问题。接下来我…...

(离散数学)命题及命题的真值

答案: (5)不是命题,因为真值不止一个 (6)不是命题,因为不是陈述句 (7)不是命题,因为不是陈述句 (8)不是命题,真值不唯一...

计算机组成原理之处理器(流水线)

引言 为什么不采用单周期实现,硬件比较简单? 主要是因为效率太低,处理器中最长的路径(一般是ld指令)决定了时钟周期 流水线概述 流水线是一种能使多条指令重叠执行的技术。 流水线更快的原因是所有的工作都在并行执行,所以单位…...

国际阿里云:云服务器灾备方案!!!

保障企业业务稳定、IT系统功能正常、数据安全十分重要,可以同时保障数据备份与系统、应用容灾的灾备解决方案应势而生,且发展迅速。ECS可使用快照、镜像进行备份。 灾备设计 快照备份 阿里云ECS可使用快照进行系统盘、数据盘的备份。目前,阿…...

计算机msvcp140.dll重新安装的四个解决方法,专门解决dll文件丢失问题的方法

在我多年的电脑使用经历中,曾经遇到过一个非常棘手的问题,那就是电脑提示找不到msvcp140.dll文件。这个问题让我苦恼了很久,但最终还是找到了解决方法。今天,我就来分享一下我解决这个问题的四种方法,希望对大家有所帮…...

提莫的idea的bug是真滴多

问题1:maven reload功能失效 我复制了一段代码到我项目里,这段代码依赖hutool包,于是我用idea快速导入,自动导入的是hutool-all:5.8.4。后来我发现这段还是有个函数报错,需要导入更高版本的hutool包才行,于…...

STM32笔记—EXTI外部中断

一、简介 中断:在主程序运行过程中,出现了特定的中断触发条件(中断源),使得CPU暂停当前正在运行的程序,转而去处理中断程序,处理完成后又返回原来被暂停的位置继续运行; 中断优先级&…...

小程序分享当前页面

小程序分享页面的时候,大部分的资料都是显示的是onShareAppMessage 这个方法 /*** 用户点击右上角分享*/onShareAppMessage(res) {return {title: 您的好友向您分享了一本通讯录: this.data.setting.name,imageUrl: this.data.setting.share_img,path: pages/shar…...

10. GPIO中断

10. GPIO中断 回顾stm32中断系统STM32中断向量表中断向量偏移NVIC中断控制器 Cortex_A7 中断系统中断向量表GIC控制器中断IDGIC逻辑分块CP15协处理器c0寄存器c1寄存器c12寄存器c15寄存器 中断使能中断优先级设置优先级数配置 GICC_PMR抢占优先级和子优先级位数设置 GICC_BPR优先…...

【离散数学必刷题】谓词逻辑(第二章 左孝凌版)刷完包过!

专栏:离散数学必刷题 本章需要掌握的重要知识: 1.利用谓词表达式表示命题 2.变元的约束 3.谓词公式的定义、谓词公式的赋值 4.谓词公式的翻译(注意在全总个体域时使用特性谓词) 5.有限论域上量词的消去 6.谓词公式中关于量词的等价…...

SpringBoot系列-2 自动装配

背景: Spring提供了IOC机制,基于此我们可以通过XML或者注解配置,将三方件注册到IOC中。问题是每个三方件都需要经过手动导入依赖、配置属性、注册IOC,比较繁琐。 基于"约定优于配置"原则的自动装配机制为该问题提供了一…...

vue3+ts 前端实现打印功能

1.安装插件 npm install vue3-print-nb --save 2.全局引用 import { createApp } from ‘vue’ import App from ‘./App.vue’ import print from ‘vue3-print-nb’ const app createApp(App) app.use(print) app.mount(‘#app’) 例子 <template><div><el-…...

egg.js sequelize数据库操作配置

egg.js sequelize数据库操作配置 文章目录 egg.js sequelize数据库操作配置1. 数据库配置2. 迁移配置3.数据表设计和迁移4.模型创建 1. 数据库配置 安装并配置egg-sequelize插件&#xff08;它会辅助我们将定义好的 Model 对象加载到 app 和 ctx 上&#xff09;和mysql2模块&a…...

vagrant安装k8s集群

目录 概述前期准备安装virtualbox安装vagrant安装gitbash 集群架构集群安装集群初始化集群测试 概述 使用vagrant、virtualbox创建。 前期准备 安装virtualbox 访问官网安装&#xff0c;版本7.0.10 安装vagrant 访问官网安装&#xff0c;版本2.3.7 安装gitbash 访问官网…...

ArcGIS进阶:水源涵养功能分级评价操作

首先抛出水源涵养重要性评价的公式&#xff1a;水源涵养量降雨量-蒸散发量-地表径流量&#xff0c;其中地表径流量降雨量*平均地表径流系数 声明&#xff1a;以下数据来源于来自于牛强老师书籍&#xff08;城乡规划GIS技术&#xff09;。 以下给出重要性评价阈值表&#xff1…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15

缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下&#xff1a; struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...

MFC内存泄露

1、泄露代码示例 void X::SetApplicationBtn() {CMFCRibbonApplicationButton* pBtn GetApplicationButton();// 获取 Ribbon Bar 指针// 创建自定义按钮CCustomRibbonAppButton* pCustomButton new CCustomRibbonAppButton();pCustomButton->SetImage(IDB_BITMAP_Jdp26)…...

深入浅出:JavaScript 中的 `window.crypto.getRandomValues()` 方法

深入浅出&#xff1a;JavaScript 中的 window.crypto.getRandomValues() 方法 在现代 Web 开发中&#xff0c;随机数的生成看似简单&#xff0c;却隐藏着许多玄机。无论是生成密码、加密密钥&#xff0c;还是创建安全令牌&#xff0c;随机数的质量直接关系到系统的安全性。Jav…...

pam_env.so模块配置解析

在PAM&#xff08;Pluggable Authentication Modules&#xff09;配置中&#xff0c; /etc/pam.d/su 文件相关配置含义如下&#xff1a; 配置解析 auth required pam_env.so1. 字段分解 字段值说明模块类型auth认证类模块&#xff0c;负责验证用户身份&am…...

Vue2 第一节_Vue2上手_插值表达式{{}}_访问数据和修改数据_Vue开发者工具

文章目录 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染2. 插值表达式{{}}3. 访问数据和修改数据4. vue响应式5. Vue开发者工具--方便调试 1.Vue2上手-如何创建一个Vue实例,进行初始化渲染 准备容器引包创建Vue实例 new Vue()指定配置项 ->渲染数据 准备一个容器,例如: …...

将对透视变换后的图像使用Otsu进行阈值化,来分离黑色和白色像素。这句话中的Otsu是什么意思?

Otsu 是一种自动阈值化方法&#xff0c;用于将图像分割为前景和背景。它通过最小化图像的类内方差或等价地最大化类间方差来选择最佳阈值。这种方法特别适用于图像的二值化处理&#xff0c;能够自动确定一个阈值&#xff0c;将图像中的像素分为黑色和白色两类。 Otsu 方法的原…...

C++中string流知识详解和示例

一、概览与类体系 C 提供三种基于内存字符串的流&#xff0c;定义在 <sstream> 中&#xff1a; std::istringstream&#xff1a;输入流&#xff0c;从已有字符串中读取并解析。std::ostringstream&#xff1a;输出流&#xff0c;向内部缓冲区写入内容&#xff0c;最终取…...

鱼香ros docker配置镜像报错:https://registry-1.docker.io/v2/

使用鱼香ros一件安装docker时的https://registry-1.docker.io/v2/问题 一键安装指令 wget http://fishros.com/install -O fishros && . fishros出现问题&#xff1a;docker pull 失败 网络不同&#xff0c;需要使用镜像源 按照如下步骤操作 sudo vi /etc/docker/dae…...

JUC笔记(上)-复习 涉及死锁 volatile synchronized CAS 原子操作

一、上下文切换 即使单核CPU也可以进行多线程执行代码&#xff0c;CPU会给每个线程分配CPU时间片来实现这个机制。时间片非常短&#xff0c;所以CPU会不断地切换线程执行&#xff0c;从而让我们感觉多个线程是同时执行的。时间片一般是十几毫秒(ms)。通过时间片分配算法执行。…...