卡尔曼家族从零解剖-(06)一维卡尔曼滤波编程实践
讲解关于slam一系列文章汇总链接:史上最全slam从零开始,针对于本栏目讲解的 卡尔曼家族从零解剖 链接 :卡尔曼家族从零解剖-(00)目录最新无死角讲解:https://blog.csdn.net/weixin_43013761/article/details/133846882
文末正下方中心提供了本人 联系方式, 点击本人照片即可显示 W X → 官方认证 {\color{blue}{文末正下方中心}提供了本人 \color{red} 联系方式,\color{blue}点击本人照片即可显示WX→官方认证} 文末正下方中心提供了本人联系方式,点击本人照片即可显示WX→官方认证
一、前言
通过五个章节的分析,目前对于一维卡尔曼滤波有了一定层次的理解,这里先给出上篇博客推导出来的结论(卡尔曼五大公式):
①: x ˇ k = f x ^ k − 1 ②: σ X k − = f 2 σ X k − 1 + + σ Q k − 1 (01) \color{red} ①:\tag{01}\check x_{k}= f\hat x_{k-1}~~~~~~~~~~~~~~~②:\sigma^{-}_{X_{k}}=f^2\sigma_{X_{k-1}}^{+}+\sigma_{Q_{k-1}} ①:xˇk=fx^k−1 ②:σXk−=f2σXk−1++σQk−1(01) ③: k k = h σ X k − h 2 σ X k − + σ R k (02) \color{red} \tag{02}③:k_k=\frac{h \sigma_{X_k}^{-} }{h^{2} \sigma_{X_k}^{-} +\sigma_{R_k}} ③:kk=h2σXk−+σRkhσXk−(02) ④: x ^ k = k k ( y k − h x ˇ ) + x ˇ ⑤: σ X k + = ( 1 − k k ) σ X k − (03) \color{red} \tag{03} ④:\hat x_{k}=k_k(y_k-h\check x)+\check x~~~~~~~~~~~~~~~~~~⑤:\sigma^+_{X_{k}}=(1-k_k) \sigma_{X_k}^{-} ④:x^k=kk(yk−hxˇ)+xˇ ⑤:σXk+=(1−kk)σXk−(03)
上面的五个式子很明显是递推的若假设已知 x ^ 0 \hat x_0 x^0、 σ X 0 + \sigma_{X_{0}}^+ σX0+、以及各个时刻观测 y k y_k yk,则可推导出出 x ^ k \hat x_k x^k、 σ X k + \sigma_{X_{k}}^+ σXk+,如下:
【 x ^ 0 , σ X 0 + , y 1 】 → 【 x ^ 1 , σ X 1 + , y 2 】 → ⋯ → 【 x ^ k , σ X k + 】 (04) \color{Green} \tag{04}【\hat x_0,\sigma_{X_{0}}^+,y_1】→【\hat x_1,\sigma_{X_{1}}^+,y_2】→\cdots→【\hat x_k,\sigma_{X_{k}}^+】 【x^0,σX0+,y1】→【x^1,σX1+,y2】→⋯→【x^k,σXk+】(04)该篇本博客主要是进行编程实践,为了公式与源码更好的对应起来,对上述公式公式进行改写,因为编程中通常需要进行模块下,所以代码中会实现一个函数,该函数只完成一次递推,故上5式符号简写为:
①: x m i n u s = f x p l u s ②: σ m i n u s = f 2 σ p l u s + q (05) \color{red} ①:\tag{05} x_ {minus}= f x_{plus}~~~~~~~~~~~~~~~②:\sigma_{minus}=f^2\sigma_{plus}+q ①:xminus=fxplus ②:σminus=f2σplus+q(05) ③: k = h σ m i n u s h 2 σ m i n u s + r (06) \color{red} \tag{06}③:k=\frac{h \sigma_{minus} }{h^{2} \sigma_{minus} +r} ③:k=h2σminus+rhσminus(06) ④: x p l u s = k ( y − h x m i n u s ) + x m i n u s ⑤: σ p l u s = ( 1 − k ) σ m i n u s (07) \color{red} \tag{07} ④: x_{plus}=k(y-h x_{minus})+x_{minus}~~~~~~~~~~~~~~~~~~⑤:\sigma_{plus}=(1-k) \sigma_{minus} ④:xplus=k(y−hxminus)+xminus ⑤:σplus=(1−k)σminus(07)上式中的 r = σ R k r=\sigma_{R_k} r=σRk(预测过程标准差,主要影响收敛速度), q = σ R k q=\sigma_{R_k} q=σRk(观测过程标准差,理解为传感器精度,可以通过实验获得),这两个值都是固定值,迭代过程中通常不会改变。由于是编程,(05) 式中的 x m i n u s x_ {minus} xminus 最终会被 (07) 式中的 x p l u s x_{plus} xplus 覆盖,同理 σ p l u s \sigma_{plus} σplus 也会被覆盖。每次计算出来的 x p l u s x_{plus} xplus 与 σ p l u s \sigma_{plus} σplus 又会作为下一次的 x m i n u s x_{minus} xminus 与 σ m i n u s \sigma_{minus} σminus 进行输入。
二、C++一维示例
是一个程序, 假设有这样一条曲线 y = 0.5 x 2 + 8 y=0.5x^2+8 y=0.5x2+8 ,现在以其为真值,当然实际应用中我们是不知道的,这里是为了模拟观测数据。观测数据在真值的基础上叠加一个高斯噪声 N ( 0 , 100 ) N(0,100) N(0,100),也就是公式推导中的 y k y_k yk。总之,通过这种方式,拿到了一批带有高斯噪声的 y k y_k yk 数据。
相关文章:
卡尔曼家族从零解剖-(06)一维卡尔曼滤波编程实践
讲解关于slam一系列文章汇总链接:史上最全slam从零开始,针对于本栏目讲解的 卡尔曼家族从零解剖 链接 :卡尔曼家族从零解剖-(00)目录最新无死角讲解:https://blog.csdn.net/weixin_43013761/article/details/133846882 文末正下方中心提供了本人 联系…...

macOS使用conda初体会
最近在扫盲测序的一些知识 其中需要安装一些软件进行练习,如质控的fastqc,然后需要用conda来配置环境变量和安装软件。记录一下方便后续查阅学习 1.安装miniconda 由于我的电脑之前已经安装了brew,所以我就直接用brew安装了 brew install …...
GetPrivateProfileSection使用
基本语法 GetPrivateProfileSection 是一个 Windows API 函数,用于检索指定 INI 文件中特定节的所有键值对。它可以读取INI文件中指定节所有的键值对并将结果存储在指定的缓冲区中。 以下是 GetPrivateProfileSection 函数的基本语法: DWORD GetPriva…...
Ubuntu20.04 安装 Matlab R2021a
1. 压缩包分卷解压缩 将下载下来的压缩包分卷解压缩 Ubuntu自带的archive会解压出错,不适用于分卷解压。 需要下载7zip (sudo apt-get install 走起) zip -F xxx.zip --out XXX.zip # xxx为主文件名 # XXX.zip为输出路径,上面的…...
让35岁程序员精力充沛的方法
最近重新阅读了《掌控:开启不疲惫、不焦虑的人生》这本书。这本书曾经对我减重20斤产生了巨大的影响。自然入睡、自然醒来,能够高效地工作和享受生活,这才是我们渴望的掌控感。以下是一些笔记: 少吃比多运动更有效地控制体重 每…...

01:2440----点灯大师
目录 一:点亮一个LED 1:原理图 2:寄存器 3:2440的框架和启动过程 A:框架 B:启动过程 4:代码 5:ARM知识补充 6:c语言和汇编的应用 A:代码 B:分析汇编语言 C:内存空间 7:内部机制 二:点亮2个灯 三:流水灯 四:按键控制LED 1:原理图 2:寄存器配置 3:代码 一:点…...

初步了解 RabbitMQ
目录 编辑一、MQ 概述 1、MQ 的简介 2、MQ 的用途 (1)限流削峰 (2)异步解耦 (3)数据收集 二、RabbitMQ 概述 1、RabbitMQ 简介 2、四大核心概念 3、RabbitMQ 的核心部分 编辑 4、名词解释: 三、Hello …...
Faster-RCNN and Mask-RCNN框架解析
由于本人记忆力实在太差,每次学完一个框架没过多久就会忘,而且码文能力不行,人又懒,所以看到了其他人写的不错的两篇框架解析的博文,先来记录一下,就当是我写的喽 Faster-rcnn详解_faster r-cnn-CSDN博客 M…...

大数据可视化数据大屏可视化模板【可视化项目案例-05】
🎉🎊🎉 你的技术旅程将在这里启航! 🚀🚀 本文选自专栏:可视化技术专栏100例 可视化技术专栏100例,包括但不限于大屏可视化、图表可视化等等。订阅专栏用户在文章底部可下载对应案例源码以供大家深入的学习研究。 🎓 每一个案例都会提供完整代码和详细的讲解,不…...
Vue Router active-class 属性
active-class 是 vue-router 模块的 router-link 组件的属性,当 router-link 标签被点击时将会应用这个样式。 单独在 router-link 标签上使用 active-class 属性 <router-link to"/about" active-class"active">about</router-link…...

Error creating bean with name ‘apiModelSpecificationReader‘ defined in URL
问题: 启动项目的时候,报错了 org.springframework.beans.factory.UnsatisfiedDependencyException: Error creating bean with name apiModelSpecificationReader defined in URL [jar:file:/D:/.gradle/caches/modules-2/files-2.1/io.springfox/sp…...

CS224W6.2——深度学习基础
在本文中,我们回顾了深度学习的概念和技术,这些概念和技术对理解图神经网络至关重要。从将机器学习表述为优化问题开始,介绍了目标函数、梯度下降、非线性和反向传播的概念。 文章目录 1. 大纲2. 优化问题2.1 举例损失函数 3. 如何优化目标函…...
Linux c/c++服务器开发实践
在Linux C开发环境中,通常有两种方式来开发多线程程序,一种是利用POSIX多线程 API函数来开发多线程程序,另外一种是利用C自带线程类来开发程序。 常见的与线程相关的基本API函数: API函数含义pthread_create创建线程pthread_exi…...

2023年11月在线IDE流行度最新排名
点击查看最新在线IDE流行度最新排名(每月更新) 2023年11月在线IDE流行度最新排名 TOP 在线IDE排名是通过分析在线ide名称在谷歌上被搜索的频率而创建的 在线IDE被搜索的次数越多,人们就会认为它越受欢迎。原始数据来自谷歌Trends 如果您相…...

视频批量剪辑:视频嵌套合并实战指南,剪辑高手速成秘籍
随着社交媒体的兴起,视频制作的需求越来越广泛。无论是个人用户还是专业团队,都需要对视频进行剪辑以符合其需求。而在这个过程中,批量剪辑视频的能力就变得至关重要。视频批量剪辑是指在一次操作中处理多个视频文件的剪辑。通过使用专业的视…...

每天一点python——day66
#每天一点Python——66 #字符串的分隔 #如图: #方法①split()从左开始分隔,默认空格为分割字符,返回值是一个列表 shello world jisuanji#首先创建一个字符串 list1s.split() print(list1)#输出结果是:[hello, world, jisuanji]注…...

搭建产品帮助中心其实很简单,方法都在这了!
网站帮助中心是一个为用户提供支持和解答问题的重要资源。它不仅可以提高用户体验,还能减少用户问题反馈的数量。通过提供清晰、易于理解的文档和指南,帮助中心可以帮助用户更好地了解产品或服务,并解决他们在使用过程中遇到的问题。接下来我…...

(离散数学)命题及命题的真值
答案: (5)不是命题,因为真值不止一个 (6)不是命题,因为不是陈述句 (7)不是命题,因为不是陈述句 (8)不是命题,真值不唯一...

计算机组成原理之处理器(流水线)
引言 为什么不采用单周期实现,硬件比较简单? 主要是因为效率太低,处理器中最长的路径(一般是ld指令)决定了时钟周期 流水线概述 流水线是一种能使多条指令重叠执行的技术。 流水线更快的原因是所有的工作都在并行执行,所以单位…...

国际阿里云:云服务器灾备方案!!!
保障企业业务稳定、IT系统功能正常、数据安全十分重要,可以同时保障数据备份与系统、应用容灾的灾备解决方案应势而生,且发展迅速。ECS可使用快照、镜像进行备份。 灾备设计 快照备份 阿里云ECS可使用快照进行系统盘、数据盘的备份。目前,阿…...
k8s从入门到放弃之Ingress七层负载
k8s从入门到放弃之Ingress七层负载 在Kubernetes(简称K8s)中,Ingress是一个API对象,它允许你定义如何从集群外部访问集群内部的服务。Ingress可以提供负载均衡、SSL终结和基于名称的虚拟主机等功能。通过Ingress,你可…...

基于ASP.NET+ SQL Server实现(Web)医院信息管理系统
医院信息管理系统 1. 课程设计内容 在 visual studio 2017 平台上,开发一个“医院信息管理系统”Web 程序。 2. 课程设计目的 综合运用 c#.net 知识,在 vs 2017 平台上,进行 ASP.NET 应用程序和简易网站的开发;初步熟悉开发一…...

大型活动交通拥堵治理的视觉算法应用
大型活动下智慧交通的视觉分析应用 一、背景与挑战 大型活动(如演唱会、马拉松赛事、高考中考等)期间,城市交通面临瞬时人流车流激增、传统摄像头模糊、交通拥堵识别滞后等问题。以演唱会为例,暖城商圈曾因观众集中离场导致周边…...
基于数字孪生的水厂可视化平台建设:架构与实践
分享大纲: 1、数字孪生水厂可视化平台建设背景 2、数字孪生水厂可视化平台建设架构 3、数字孪生水厂可视化平台建设成效 近几年,数字孪生水厂的建设开展的如火如荼。作为提升水厂管理效率、优化资源的调度手段,基于数字孪生的水厂可视化平台的…...

CMake 从 GitHub 下载第三方库并使用
有时我们希望直接使用 GitHub 上的开源库,而不想手动下载、编译和安装。 可以利用 CMake 提供的 FetchContent 模块来实现自动下载、构建和链接第三方库。 FetchContent 命令官方文档✅ 示例代码 我们将以 fmt 这个流行的格式化库为例,演示如何: 使用 FetchContent 从 GitH…...

IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...

网络编程(UDP编程)
思维导图 UDP基础编程(单播) 1.流程图 服务器:短信的接收方 创建套接字 (socket)-----------------------------------------》有手机指定网络信息-----------------------------------------------》有号码绑定套接字 (bind)--------------…...
C++课设:简易日历程序(支持传统节假日 + 二十四节气 + 个人纪念日管理)
名人说:路漫漫其修远兮,吾将上下而求索。—— 屈原《离骚》 创作者:Code_流苏(CSDN)(一个喜欢古诗词和编程的Coder😊) 专栏介绍:《编程项目实战》 目录 一、为什么要开发一个日历程序?1. 深入理解时间算法2. 练习面向对象设计3. 学习数据结构应用二、核心算法深度解析…...

R 语言科研绘图第 55 期 --- 网络图-聚类
在发表科研论文的过程中,科研绘图是必不可少的,一张好看的图形会是文章很大的加分项。 为了便于使用,本系列文章介绍的所有绘图都已收录到了 sciRplot 项目中,获取方式: R 语言科研绘图模板 --- sciRplothttps://mp.…...

Python环境安装与虚拟环境配置详解
本文档旨在为Python开发者提供一站式的环境安装与虚拟环境配置指南,适用于Windows、macOS和Linux系统。无论你是初学者还是有经验的开发者,都能在此找到适合自己的环境搭建方法和常见问题的解决方案。 快速开始 一分钟快速安装与虚拟环境配置 # macOS/…...