当前位置: 首页 > news >正文

数据分析实战 | 泊松回归——航班数据分析

目录

一、数据及分析对象

二、目的及分析任务

三、方法及工具

四、数据读入

五、数据理解

六、数据准备

七、模型训练

八、模型评价


一、数据及分析对象

CSV文件:o-ring-erosion-only.csv

数据集链接:https://download.csdn.net/download/m0_70452407/88524654

该数据集给出了挑战者航天飞机的O型圈(O-Ring)数据,主要属性如下:

(1)Number of O-ring at risk on a given flight:航班上存在潜在风险的O形环数量。

(2)Number experiencing thermal distress:出现热损伤的O形环数量。

(3)Launch temperature(degrees F):发射温度(华氏度)。

(4)Leak-check pressure(psi):捡漏压力(psi)。

(5)Temporal order of flight:航班时序。

二、目的及分析任务

理解机器学习方法在数据分析中的应用——采用泊松回归方法进行回归分析。

(1)以全部记录为训练集进行泊松回归建模。

(2)对模型进行假设检验和可视化处理,验证泊松回归建模的有效性。

三、方法及工具

Python语言及其第三方包pandas、NumPy和statsmodels

四、数据读入

由于原数据没有表头,因此在读取CSV文件时通过names参数手动生成表头。

import pandas as pd
df_erosion=pd.read_csv("D:\\Download\\JDK\\数据分析理论与实践by朝乐门_机械工业出版社\\第3章 回归分析\\o-ring-erosion-only.csv",names=['Number of O-ring at risk on a given flight','Number experiencing thermal distress','Launch temperature(degrees F)','Leak-check pressure(psi)','Temporal order of flight'])
df_erosion.head()

五、数据理解

对数据框df_erosion进行探索性分析:

df_erosion.describe()

其中,预测变量"Number experiencing thermal distress"的最大值为2,最小值为0,平均热损伤O形环数为0.391。

除了describe()方法,还可以调用shape属性和columns属性对数据框进行探索性分析。

df_erosion.shape
(23, 5)
df_erosion.columns
Index(['Number of O-ring at risk on a given flight','Number experiencing thermal distress', 'Launch temperature(degrees F)','Leak-check pressure(psi)', 'Temporal order of flight'],dtype='object')

绘制直方图来查看因变量“Number experiencing thermal distress”数据的连续性,通过调用mayplotlib.pyplot包中数据框(DataFrame)的hist()方法创建频数直方图。

import matplotlib.pyplot as plt
plt.rcParams['font.family']="simHei"   #汉字显示 字体设置
plt.hist(df_erosion['Number experiencing thermal distress'],bins=10,facecolor="blue",edgecolor="black",alpha=0.7)
plt.xlabel('区间')
plt.ylabel('频数')
plt.title("因变量‘Number experiencing thermal distress’频数分布直方图")

通过调用NumPy包中数据框(DataFrame)的mean()方法和var()方法查看因变量“Number experiencing thermal distress”的均值和方差。

import numpy as np
print(np.mean(df_erosion['Number experiencing thermal distress']))
print(np.var(df_erosion['Number experiencing thermal distress']))
0.391304347826087
0.41209829867674863

可以看到方差约等于平均值,避免了在泊松分布中发生过度分散或分散不足的情况。泊松分布的一个重要特征是均值和方差相等,称为分散均衡。只有分散均衡的数据才能使用泊松分布模型。均值小于方差称为分散过度,所有分布向左侧倾斜,数值较小的数据出现概率较高。均值大于方差的称为分散不足。

六、数据准备

进行泊松回归分析前,应准备好模型所需的特征矩阵(X)和目标向量(y)。这里采用Python的统计分析包statsmodels进行自动你类型转换,数据对象y即可使用。若采用其他包(如scikit-learn等需要采用np.ravel()方法对y进行转换)。

原始数据集中列名过长,需要对其重新命名。同时遵从习惯调整特征顺序,将因变量调至最后一列。

df_erosion.rename(columns={'Number of O-ring at risk on a given flight':'num_rings','Launch temperature(degrees F)':'temperature','Leak-check pressure(psi)':'pressure','Number experiencing thermal distress':'num_distress','Temporal order of flight':'order'},inplace=True)
order=['num_rings','temperature','pressure','order','num_distress']
df_erosion=df_erosion[order]
df_erosion.head()

七、模型训练

以航班上存在潜在风险的O形环数量num_rings、发射温度temperature、捡漏压力pressure和航班时许order作为自变量,飞行中热损伤O形环的数量num_distress作为因变量对数据进行泊松回归建模。这里采用的实现方式为调用Python的统计分析包statsmodels中的GLM()方法进行建模分析。

import statsmodels.formula.api as smf

statsmodels.GLM()方法的输入有3个,第一个形参为formula,具体形式为y~x,在这里即为“num_distress~num_rings+temperature+pressure+order"。第二个参数是模型训练所用的数据集df_erosion。最后一个参数为创建GLM模型所用的Poisson()模型。这里通过调用NumPy库的column_stack()方法对各自变量矩阵按列合并创建特征矩阵X。

x=np.column_stack((df_erosion['num_rings'],df_erosion['temperature'],df_erosion['pressure'],df_erosion['order']))

在自变量x和因变量y上使用GLM()方法进行泊松回归。

import statsmodels.api as sm
glm=smf.glm('num_distress~num_rings+temperature+pressure+order',df_erosion,family=sm.families.Poisson())

然后获取拟合结果,并将回归拟合的摘要全部打印出来。

results=glm.fit()
print(results.summary())
   Generalized Linear Model Regression Results                  
==============================================================================
Dep. Variable:           num_distress   No. Observations:                   23
Model:                            GLM   Df Residuals:                       19
Model Family:                 Poisson   Df Model:                            3
Link Function:                    Log   Scale:                          1.0000
Method:                          IRLS   Log-Likelihood:                -15.317
Date:                Sat, 11 Nov 2023   Deviance:                       15.407
Time:                        12:45:43   Pearson chi2:                     23.4
No. Iterations:                     5   Pseudo R-squ. (CS):             0.2633
Covariance Type:            nonrobust                                         
===============================================================================coef    std err          z      P>|z|      [0.025      0.975]
-------------------------------------------------------------------------------
Intercept       0.0984      0.090      1.094      0.274      -0.078       0.275
num_rings       0.5905      0.540      1.094      0.274      -0.468       1.649
temperature    -0.0883      0.042     -2.092      0.036      -0.171      -0.006
pressure        0.0070      0.010      0.708      0.479      -0.012       0.026
order           0.0115      0.077      0.150      0.881      -0.138       0.161
===============================================================================

第二部分的coef列所对应的Intercept、num_rings、temperature、pressure和order就是计算出的回归模型中各自变量的系数。

除了读取回归摘要外,还可以调用params属性查看拟合结果。

results.params
Intercept      0.098418
num_rings      0.590510
temperature   -0.088329
pressure       0.007007
order          0.011480
dtype: float64

八、模型评价

通过模型摘要可以看到,只有自变量temperature的p值小于0.05,通过了T检验。这意味着其他解释变量在控制temperature的前提下,对因变量的影响不显著。

建立的泊松回归模型如下:

num\_distress=exp(0.098418+0.590510\times num\_rings-0.88329\times temperature+0.007007\times pressure+0.11480\times order)

模型的预测结果如下:

df_erosion['predict_result']=results.predict(df_erosion)
df_erosion['predict_result']=df_erosion['predict_result'].apply(lambda x:round(x,3))
df_erosion

最后采用均方根误差(RMSE)来评估模型预测结果。

from sklearn.metrics import mean_squared_error
print("RMSE:",np.sqrt(mean_squared_error(df_erosion.predict_result,df_erosion.num_distress)))
RMSE: 0.4895481057323038

 此结果说明该模型的均方根误差为0.490,表明该模型有一定的预测能力。

相关文章:

数据分析实战 | 泊松回归——航班数据分析

目录 一、数据及分析对象 二、目的及分析任务 三、方法及工具 四、数据读入 五、数据理解 六、数据准备 七、模型训练 八、模型评价 一、数据及分析对象 CSV文件:o-ring-erosion-only.csv 数据集链接:https://download.csdn.net/download/m0_7…...

Fliki AI:让视频创作更简单、更高效

在当今的数字时代,视频已经成为人们获取信息和娱乐的重要方式。无论是企业宣传、教育培训还是个人创作,视频都发挥着越来越重要的作用。然而,视频制作是一项复杂的工作,需要掌握一定的技能和经验。这对于初学者或没有专业视频制作…...

webGL编程指南 第五章 MultiTexture.html

我会持续更新关于wegl的编程指南中的代码。 当前的代码不会使用书中的缩写&#xff0c;每一步都是会展开写。希望能给后来学习的一些帮助 git代码地址 &#xff1a;空 上一章节中我们学习texParameteri的使用,这一章节中我们两个图片进行混合 <!DOCTYPE html> <htm…...

mysql8安装和驱动jar包下载

方式一&#xff1a;基于docker安装 下拉镜像 docker pull mysql:8.0.21 启动镜像 docker run -p 3307:3306 --name mysql -e MYSQL_ROOT_PASSWORDhadoop -d mysql:8.0.21 启动成功后&#xff0c;进入容器内部拷贝配置文件&#xff0c;到宿主主机 docker cp mysql:/etc/mysql…...

(SpringBoot)第五章:SpringBoot创建和使用

文章目录 一&#xff1a;Spring和SpringBoot&#xff08;1&#xff09;Spring已解决和未解决的问题&#xff08;2&#xff09;SpringBoot 二&#xff1a;Spring项目的创建&#xff08;1&#xff09;IDEA创建&#xff08;2&#xff09;网页端创建 三&#xff1a;项目目录介绍及运…...

Linux重定向

文章目录 1. 文件描述符分配规则2. 重定向接口dup2自定义shell重定向(补充) 3. 标准输出和标准错误4. 如何理解一切接文件 本章代码gitee地址&#xff1a;文件重定向 1. 文件描述符分配规则 文件描述符的分配规则是从0下标开始&#xff0c;寻址最小的没有使用的数组位置&#…...

Python之文件与文件夹操作及 pytest 测试习题

目录 1、文本文件读写基础。编写程序&#xff0c;在 当前目录下创建一个文本文件 test.txt&#xff0c;并向其中写入字符串 hello world。2、编写一个程序 demo.py&#xff0c;要求运行该程序后&#xff0c;生成 demo_new.py 文件&#xff0c;其中内容与demo.py 一样&#xff0…...

物联网:实现数据驱动决策,推动经济发展

开发物联网系统的意义主要体现在以下几个方面&#xff1a; 连接一切&#xff1a;物联网的目标是连接一切&#xff0c;将生活中的各种物理对象互联起来。通过物联网开发&#xff0c;我们可以实现各类设备的智能化&#xff0c;包括家居设备、交通工具、工业设备等。这将为人们提…...

Leetcode 2929. Distribute Candies Among Children II

Leetcode 2929. Distribute Candies Among Children II 1. 解题思路2. 代码实现 题目链接&#xff1a;2929. Distribute Candies Among Children II 1. 解题思路 这一题很惭愧&#xff0c;没能自力搞定&#xff0c;最后是看了大佬的思路之后才做出来的&#xff0c;唉…… 这…...

【面经】ES中分片是什么?副本是什么?

ES分片 分片是将一个索引切分为多个底层物理的Lucene索引&#xff0c;这些被切分出来的每个部分称为一个分片。 每个分片都是一个全功能且独立的索引&#xff0c;可由集群中的任何主机存储。 在创建索引时&#xff0c;用户可以指定其分片的数量。 默认情况下&#xff0c;每个索…...

【算法练习Day46】判断子序列不同的子序列

​&#x1f4dd;个人主页&#xff1a;Sherry的成长之路 &#x1f3e0;学习社区&#xff1a;Sherry的成长之路&#xff08;个人社区&#xff09; &#x1f4d6;专栏链接&#xff1a;练题 &#x1f3af;长路漫漫浩浩&#xff0c;万事皆有期待 文章目录 判断子序列不同的子序列总结…...

Java设计模式之访问者模式

目录 定义 结构 案例 优点 缺点 使用场景 扩展 分派 案例实现须知 动态分派 静态分派 双分派 定义 封装一些作用于某种数据结构中的各元素的操作&#xff0c;它可以在不改变这个数据结构的前提下定义作用于这些元素的新的操作。 结构 访问者模式包含以下主要角色…...

PySide/PYQT如何用Qt Designer和代码来设置文字属性,如何设置文字颜色?

文章目录 📖 介绍 📖🏡 环境 🏡📒 实现方法 📒📝 Qt Designer设置📝 代码📖 介绍 📖 本人介绍如何使用Qt Designer/代码来设置字体属性(包含字体颜色) 🏡 环境 🏡 本文使用Pyside6来进行演示📒 实现方法 📒 📝 Qt Designer设置 首先打开Qt De…...

ubuntu 设置最大带宽

背景 近日做实验&#xff0c;需要限制一些机子的带宽以达到模拟的效果。在网上搜索了一阵子&#xff0c;结合自己实操的经验&#xff0c;潦草写下这篇文章&#xff0c;供自己与有需要的人参考。 环境&#xff1a; Ubuntu 22.04.1 LTS 安装 wondershaper 和 speedtest-cli w…...

如何在 Python 中执行 MySQL 结果限制和分页查询

Python MySQL 限制结果 限制结果数量 示例 1: 获取您自己的 Python 服务器 选择 “customers” 表中的前 5 条记录&#xff1a; import mysql.connectormydb mysql.connector.connect(host"localhost",user"您的用户名",password"您的密码"…...

Django配置文件,request,链接mysql方法,Orm简介

三板斧问题(views.py) HttpResponse # 返回的是字符串render # 渲染一个HTML静态文件&#xff0c;模板文件redirect # 重定向的 在视图文件中得视图函数必须要接收一个形参request&#xff0c;并且&#xff0c;视图函数也要有返回值&#xff…...

ubuntu下载各个版本chrome方法

Ubuntu/debian 在这里面找版本 https://unix.stackexchange.com/a/612981然后添充进去 http://dl.google.com/linux/chrome/deb/pool/main/g/google-chrome-stable/google-chrome-stable_[HERE_THE_FULL_VERSION]_amd64.deb比如&#xff1a;https://dl.google.com/linux/chro…...

Http状态码502常见原因及排错思路(实战)

Http状态码502常见原因及排错思路 502表示Bad Gateway。当Nginx返回502错误时&#xff0c;通常表示Nginx作为代理服务器无法从上游服务器&#xff08;如&#xff1a;我们的后端服务器地址&#xff09;获取有效的响应。导致这种情况的原因有很多&#xff1a; 后端服务器故障ngin…...

国际阿里云:无法ping通ECS实例公网IP的排查方法!!!

无法ping通ECS实例的原因较多&#xff0c;您可以参考本文进行排查。 问题现象 本地客户端无法ping通目标ECS实例公网IP&#xff0c;例如&#xff1a; 本地客户端为Linux系统&#xff0c;ping目标ECS实例公网IP时无响应&#xff0c;如下所示&#xff1a; 本地客户端为Windo…...

Nginx缓存基础

1 nginx缓存的流程 客户端需要访问服务器的数据时&#xff0c;如果都直接向服务器发送请求&#xff0c;服务器接收过多的请求&#xff0c;压力会比较大&#xff0c;也比较耗时&#xff1b;而如果在nginx缓存一定的数据&#xff0c;使客户端向基于nginx的代理服务器发送请求&…...

浏览器访问 AWS ECS 上部署的 Docker 容器(监听 80 端口)

✅ 一、ECS 服务配置 Dockerfile 确保监听 80 端口 EXPOSE 80 CMD ["nginx", "-g", "daemon off;"]或 EXPOSE 80 CMD ["python3", "-m", "http.server", "80"]任务定义&#xff08;Task Definition&…...

[2025CVPR]DeepVideo-R1:基于难度感知回归GRPO的视频强化微调框架详解

突破视频大语言模型推理瓶颈,在多个视频基准上实现SOTA性能 一、核心问题与创新亮点 1.1 GRPO在视频任务中的两大挑战 ​安全措施依赖问题​ GRPO使用min和clip函数限制策略更新幅度,导致: 梯度抑制:当新旧策略差异过大时梯度消失收敛困难:策略无法充分优化# 传统GRPO的梯…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

【磁盘】每天掌握一个Linux命令 - iostat

目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat&#xff08;I/O Statistics&#xff09;是Linux系统下用于监视系统输入输出设备和CPU使…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

1.3 VSCode安装与环境配置

进入网址Visual Studio Code - Code Editing. Redefined下载.deb文件&#xff0c;然后打开终端&#xff0c;进入下载文件夹&#xff0c;键入命令 sudo dpkg -i code_1.100.3-1748872405_amd64.deb 在终端键入命令code即启动vscode 需要安装插件列表 1.Chinese简化 2.ros …...

ip子接口配置及删除

配置永久生效的子接口&#xff0c;2个IP 都可以登录你这一台服务器。重启不失效。 永久的 [应用] vi /etc/sysconfig/network-scripts/ifcfg-eth0修改文件内内容 TYPE"Ethernet" BOOTPROTO"none" NAME"eth0" DEVICE"eth0" ONBOOT&q…...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

GitFlow 工作模式(详解)

今天再学项目的过程中遇到使用gitflow模式管理代码&#xff0c;因此进行学习并且发布关于gitflow的一些思考 Git与GitFlow模式 我们在写代码的时候通常会进行网上保存&#xff0c;无论是github还是gittee&#xff0c;都是一种基于git去保存代码的形式&#xff0c;这样保存代码…...

在 Spring Boot 中使用 JSP

jsp&#xff1f; 好多年没用了。重新整一下 还费了点时间&#xff0c;记录一下。 项目结构&#xff1a; pom: <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://ww…...