当前位置: 首页 > news >正文

为什么要用“交叉熵”做损失函数


大家好啊,我是董董灿。

今天看一个在深度学习中很枯燥但很重要的概念——交叉熵损失函数。

作为一种损失函数,它的重要作用便是可以将“预测值”和“真实值(标签)”进行对比,从而输出 loss 值,直到  loss 值收敛,可以认为神经网络模型训练完成。

那么这个所谓的“交叉熵”到底是什么,为什么它可以用来作为损失函数呢?

1、熵与交叉熵

“交叉熵”包含了“交叉”和“熵”这两部分。

关于“熵”的描述在理解熵的本质一文中有更详细的说明。总的来说,熵可以用来衡量一个随机变量的不确定性,数学上可表示为:

H(i) = - ∑ P(i) * log(P(i))

对于上面的公式,我们稍微变一下形,将负号和 log(P(i)) 看做一个变量,得到:

PP(i) = -log(p(i))

那么熵的公式就可以写作:

H(i) = ∑ P(i) * PP(i)

此时熵的公式中,P(i) 和 PP(i) 是服从相同的概率分布。因此,熵H(i)就变成了事件 PP(i) 发生的数学期望,通俗理解为均值。

熵越大,表示事件发生的不确定性越大。

而交叉熵是用于比较两个概率分布之间的差异,对于两个概率分布 P 和 Q 而言,交叉熵定义为:

H(i) = ∑ P(i) * Q(i)

此时,P(i) 和 Q(i) 服从两种不同的概率分布,交叉熵的“交叉”就体现在这。

其中 P(i) 为真实分布,也就是训练过程中标签的分布;Q(i) 为预测分布,也就是模型每轮迭代输出的预测结果的分布。

交叉熵越小,表示两个概率分布越接近。

从而模型预测结果就越接近真实标签结果,说明模型训练收敛了。

关于更细节的数学原理,可以查看熵的本质,不过我们也可以不用深究,理解上述结论就可以。

2、交叉熵作为损失函数

假设有一个动物图像数据集,其中有五种不同的动物,每张图像中只有一只动物。

图片

我们将每张图像都使用 one-hot 编码来标记动物。对one-hot编码不清楚的可以移步这里有个你肯定能理解的one-hot。

图片

上图是对动物分类进行编码后的表格,我们可以将一个one-hot 编码视为每个图像的概率分布,那么:

第一个图像是狗的概率分布是 1.0 (100%)。

图片

对于第二张图是狐狸的概率分布是1.0(100%)。

图片

以此类推,此时,每个图像的熵都为零。

图片

换句话说,one-hot 编码标签 100% 确定地告诉我们每张图像有哪些动物:第一张图片不可能 90% 是狗,10% 是猫,因为它100%是狗。

因为这是训练的标签,是固定下来的确定分布。

现在,假设有一个神经网络模型来对这些图像进行预测,在神经网络执行完一轮训练迭代后,它可能会对第一张图像(狗)进行如下分类:

图片

该分类表明,第一张图像越 40%的概率是狗,30%的概率是狐狸,5%的概率是马,5%的概率是老鹰,20%的概率是松鼠。

但是,单从图像标签上看,它100%是一只狗,标签为我们提供了这张图片的准确的概率分布。

图片

那么,此时如何评价模型预测的效果呢?

我们可以计算利用标签的one-hot编码作为真实概率分布 P,模型预测的结果作为 Q 来计算交叉熵:

图片

结果明显高于标签的零熵,说明预测结果并不是很好。

继续看另一个例子。

假设模型经过了改良,在完成一次推理或者一轮训练后,对第一张图得到了如下的预测,也就是说这张图有98%的概率是狗,这个标签的100%已经差的很少了。

图片

我们依然计算交叉熵:

图片

可以看到交叉熵变得很低,随着预测变得越来越准确,交叉熵会下降,如果预测是完美的,它就会变为零。

基于此理论,很多分类模型都会利用交叉熵作为模型的损失函数。

在机器学习中,由于多种原因(比如更容易计算导数),对数 log 的计算大部分情况下是使用基数 e 而不是基数 2 ,对数底的改变不会引起任何问题,因为它只改变幅度。

图片


最近开通另一个计算机视觉从入门到调优的专栏,感兴趣的小伙伴可以查看:计算机视觉从入门到调优

相关文章:

为什么要用“交叉熵”做损失函数

大家好啊,我是董董灿。 今天看一个在深度学习中很枯燥但很重要的概念——交叉熵损失函数。 作为一种损失函数,它的重要作用便是可以将“预测值”和“真实值(标签)”进行对比,从而输出 loss 值,直到 loss 值收敛,可以…...

【Android】Android apk 逆向编译

链接:https://pan.baidu.com/s/14r5s9EJwQgeLK5cCb1Gq1Q 提取码:qdqt 解压jadx 在 lib 文件内找到 jadx-gui-1.4.7.jar 打开cmd 执行 :java -jar jadx-gui-1.4.7.jar示列:...

04-详解SpringBoot自动装配的原理,依赖属性配置的实现,源码分析

自动装配原理 依赖属性配置 提供Bean用来封装配置文件中对应属性的值 Data public class Cat {private String name;private Integer age; }Data public class Mouse {private String name;private Integer age; }cartoon:cat:name: "图多盖洛"age: 5mouse:name: …...

[100天算法】-不同路径 III(day 73)

题目描述 在二维网格 grid 上,有 4 种类型的方格:1 表示起始方格。且只有一个起始方格。 2 表示结束方格,且只有一个结束方格。 0 表示我们可以走过的空方格。 -1 表示我们无法跨越的障碍。 返回在四个方向(上、下、左、右&#…...

【c++随笔12】继承

【c随笔12】继承 一、继承1、继承的概念2、3种继承方式3、父类和子类对象赋值转换4、继承中的作用域——隐藏5、继承与友元6、继承与静态成员 二、继承和子类默认成员函数1、子类构造函数 二、子类拷贝构造函数3、子类的赋值重载4、子类析构函数 三、单继承、多继承、菱形继承1…...

Excel中使用数据验证、OFFSET实现自动更新式下拉选项

在excel工作簿中,有两个Sheet工作表。 Sheet1: Sheet2(数据源表): 要实现Sheet1中的“班级”内容,从数据源Sheet2中获取并形成下拉选项,且Sheet2中“班级”内容更新后,Sheet1中“班…...

Android修行手册 - 可变参数中星号什么作用(冷知识)

点击跳转>Unity3D特效百例点击跳转>案例项目实战源码点击跳转>游戏脚本-辅助自动化点击跳转>Android控件全解手册点击跳转>Scratch编程案例点击跳转>软考全系列 👉关于作者 专注于Android/Unity和各种游戏开发技巧,以及各种资源分享&…...

Python与ArcGIS系列(三)视图缩放

目录 0 简述1 在所有图层中缩放至所选要素2 在单独图层中缩放至所选要素3 改变地图范围0 简述 本篇介绍如何利用arcpy实现缩放视图到所选要素以及改变地图范围功能。 对于以及创建的选择集数据,通常需要进行缩放以更好地显示所选要素,要素缩放可分为两种:第一种是在所有图层…...

[ASP]数据库编辑与管理V1.0

本地测试:需要运行 ASP专业调试工具(自己搜索下载) 默认登陆口令:admin 修改口令:打开index.asp找到第3行把admin"admin"改成其他,如admin"abc123" 程序功能齐全,代码精简…...

MyBatis Plus整合Redis实现分布式二级缓存

MyBatis缓存描述 MyBatis提供了两种级别的缓存, 分别时一级缓存和二级缓存。一级缓存是SqlSession级别的缓存,只在SqlSession对象内部存储缓存数据,如果SqlSession对象不一样就无法命中缓存,二级缓存是mapper级别的缓存&#xff…...

如何帮助 3D CAD 设计师实现远程办公

当 3D CAD 设计师需要远程办公时,他们可能需要更强的远程软件,以满足他们的专业需求。比如高清画质,以及支持设备重定向、多显示器支持等功能。3D CAD 设计师如何实现远程办公?接下来我们跟随 Platinum Tank Group 的故事来了解一…...

如何在 Idea 中修改文件的字符集(如:UTF-8)

以 IntelliJ IDEA 2023.2 (Ultimate Edition) 为例,如下: 点击左上角【IntelliJ IDEA】->【Settings…】,如下图: 从弹出页面的左侧导航中找到【Editor】->【File Encodings】,并将 Global Encoding、Project E…...

【C++】单例模式【两种实现方式】

目录 一、了解单例模式前的基础题 1、设计一个类,不能被拷贝 2、设计一个类,只能在堆上创建对象 3、设计一个类,只能在栈上创建对象 4、设计一个类,不能被继承 二、单例模式 1、单例模式的概念 2、单例模式的两种实现方式 …...

php的api接口token简单实现

<?php // 生成 Token function generateToken() {$token bin2hex(random_bytes(16)); // 使用随机字节生成 tokenreturn $token; } // 存储 Token&#xff08;这里使用一个全局变量来模拟存储&#xff09; $tokens []; // 验证 Token function validateToken($token) {gl…...

CCNA课程实验-13-PPPoE

目录 实验条件网络拓朴需求 配置实现基础配置模拟运营商ISP配置ISP的DNS配置出口路由器OR基础配置PC1基础配置 出口路由器OR配置PPPOE拨号创建NAT(PAT端口复用) PC1测试结果 实验条件 网络拓朴 需求 OR使用PPPoE的方式向ISP发送拨号的用户名和密码&#xff0c;用户名&#xf…...

cocosCreator 之 Bundle使用

版本&#xff1a; v3.4.0 语言&#xff1a; TypeScript 环境&#xff1a; Mac Bundle简介 全名 Asset Bundle(简称AB包)&#xff0c;自cocosCreator v2.4开始支持&#xff0c;用于作为资源模块化工具。 允许开发者根据项目需求将贴图、脚本、场景等资源划分在 Bundle 中&am…...

分类网络搭建示例

搭建CNN网络 本章我们来学习一下如何搭建网络&#xff0c;初始化方法&#xff0c;模型的保存&#xff0c;预训练模型的加载方法。本专栏需要搭建的是对分类性能的测试&#xff0c;所以这里我们只以VGG为例。 请注意&#xff0c;这里定义的只是一个简陋的版本&#xff0c;后续一…...

为 Ubuntu 虚拟机构建 SSH 服务器

以校园网环境和VMware为例&#xff0c;关键步骤如下&#xff1a; 安装 SSH 服务&#xff1a; 打开 Ubuntu 虚拟机。打开终端。输入命令 sudo apt-get update 更新软件包列表。输入命令 sudo apt-get install openssh-server 安装 SSH 服务。 配置 SSH 服务&#xff1a; 编辑配…...

SpringBoot--中间件技术-2:整合redis,redis实战小案例,springboot cache,cache简化redis的实现,含代码

SpringBoot整合Redis 实现步骤 导pom文件坐标 <!--redis依赖--> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId> </dependency>yaml主配置文件&#xff0c;配置…...

linux rsyslog配置文件详解

1.rsyslog配置文件简介 linux rsyslog配置文件/etc/rsyslog.conf分为三部分:MODULES、GLOBAL DIRECTIVES、RULES ryslog模块说明 模块说明MODULES指定接收日志的协议和端口。若要配置日志服务器,则需要将相应的配置项注释去掉。GLOBAL DIRECTIVES主要用来配置日志模版。指定…...

VB.net复制Ntag213卡写入UID

本示例使用的发卡器&#xff1a;https://item.taobao.com/item.htm?ftt&id615391857885 一、读取旧Ntag卡的UID和数据 Private Sub Button15_Click(sender As Object, e As EventArgs) Handles Button15.Click轻松读卡技术支持:网站:Dim i, j As IntegerDim cardidhex, …...

oracle与MySQL数据库之间数据同步的技术要点

Oracle与MySQL数据库之间的数据同步是一个涉及多个技术要点的复杂任务。由于Oracle和MySQL的架构差异&#xff0c;它们的数据同步要求既要保持数据的准确性和一致性&#xff0c;又要处理好性能问题。以下是一些主要的技术要点&#xff1a; 数据结构差异 数据类型差异&#xff…...

Nuxt.js 中的路由配置详解

Nuxt.js 通过其内置的路由系统简化了应用的路由配置&#xff0c;使得开发者可以轻松地管理页面导航和 URL 结构。路由配置主要涉及页面组件的组织、动态路由的设置以及路由元信息的配置。 自动路由生成 Nuxt.js 会根据 pages 目录下的文件结构自动生成路由配置。每个文件都会对…...

AI编程--插件对比分析:CodeRider、GitHub Copilot及其他

AI编程插件对比分析&#xff1a;CodeRider、GitHub Copilot及其他 随着人工智能技术的快速发展&#xff0c;AI编程插件已成为提升开发者生产力的重要工具。CodeRider和GitHub Copilot作为市场上的领先者&#xff0c;分别以其独特的特性和生态系统吸引了大量开发者。本文将从功…...

【论文阅读28】-CNN-BiLSTM-Attention-(2024)

本文把滑坡位移序列拆开、筛优质因子&#xff0c;再用 CNN-BiLSTM-Attention 来动态预测每个子序列&#xff0c;最后重构出总位移&#xff0c;预测效果超越传统模型。 文章目录 1 引言2 方法2.1 位移时间序列加性模型2.2 变分模态分解 (VMD) 具体步骤2.3.1 样本熵&#xff08;S…...

【Redis】笔记|第8节|大厂高并发缓存架构实战与优化

缓存架构 代码结构 代码详情 功能点&#xff1a; 多级缓存&#xff0c;先查本地缓存&#xff0c;再查Redis&#xff0c;最后才查数据库热点数据重建逻辑使用分布式锁&#xff0c;二次查询更新缓存采用读写锁提升性能采用Redis的发布订阅机制通知所有实例更新本地缓存适用读多…...

Qemu arm操作系统开发环境

使用qemu虚拟arm硬件比较合适。 步骤如下&#xff1a; 安装qemu apt install qemu-system安装aarch64-none-elf-gcc 需要手动下载&#xff0c;下载地址&#xff1a;https://developer.arm.com/-/media/Files/downloads/gnu/13.2.rel1/binrel/arm-gnu-toolchain-13.2.rel1-x…...

Elastic 获得 AWS 教育 ISV 合作伙伴资质,进一步增强教育解决方案产品组合

作者&#xff1a;来自 Elastic Udayasimha Theepireddy (Uday), Brian Bergholm, Marianna Jonsdottir 通过搜索 AI 和云创新推动教育领域的数字化转型。 我们非常高兴地宣布&#xff0c;Elastic 已获得 AWS 教育 ISV 合作伙伴资质。这一重要认证表明&#xff0c;Elastic 作为 …...

macOS 终端智能代理检测

&#x1f9e0; 终端智能代理检测&#xff1a;自动判断是否需要设置代理访问 GitHub 在开发中&#xff0c;使用 GitHub 是非常常见的需求。但有时候我们会发现某些命令失败、插件无法更新&#xff0c;例如&#xff1a; fatal: unable to access https://github.com/ohmyzsh/oh…...

JDK 17 序列化是怎么回事

如何序列化&#xff1f;其实很简单&#xff0c;就是根据每个类型&#xff0c;用工厂类调用。逐个完成。 没什么漂亮的代码&#xff0c;只有有效、稳定的代码。 代码中调用toJson toJson 代码 mapper.writeValueAsString ObjectMapper DefaultSerializerProvider 一堆实…...