为什么要用“交叉熵”做损失函数
大家好啊,我是董董灿。
今天看一个在深度学习中很枯燥但很重要的概念——交叉熵损失函数。
作为一种损失函数,它的重要作用便是可以将“预测值”和“真实值(标签)”进行对比,从而输出 loss 值,直到 loss 值收敛,可以认为神经网络模型训练完成。
那么这个所谓的“交叉熵”到底是什么,为什么它可以用来作为损失函数呢?
1、熵与交叉熵
“交叉熵”包含了“交叉”和“熵”这两部分。
关于“熵”的描述在理解熵的本质一文中有更详细的说明。总的来说,熵可以用来衡量一个随机变量的不确定性,数学上可表示为:
H(i) = - ∑ P(i) * log(P(i))
对于上面的公式,我们稍微变一下形,将负号和 log(P(i)) 看做一个变量,得到:
PP(i) = -log(p(i))
那么熵的公式就可以写作:
H(i) = ∑ P(i) * PP(i)
此时熵的公式中,P(i) 和 PP(i) 是服从相同的概率分布。因此,熵H(i)就变成了事件 PP(i) 发生的数学期望,通俗理解为均值。
熵越大,表示事件发生的不确定性越大。
而交叉熵是用于比较两个概率分布之间的差异,对于两个概率分布 P 和 Q 而言,交叉熵定义为:
H(i) = ∑ P(i) * Q(i)
此时,P(i) 和 Q(i) 服从两种不同的概率分布,交叉熵的“交叉”就体现在这。
其中 P(i) 为真实分布,也就是训练过程中标签的分布;Q(i) 为预测分布,也就是模型每轮迭代输出的预测结果的分布。
交叉熵越小,表示两个概率分布越接近。
从而模型预测结果就越接近真实标签结果,说明模型训练收敛了。
关于更细节的数学原理,可以查看熵的本质,不过我们也可以不用深究,理解上述结论就可以。
2、交叉熵作为损失函数
假设有一个动物图像数据集,其中有五种不同的动物,每张图像中只有一只动物。

我们将每张图像都使用 one-hot 编码来标记动物。对one-hot编码不清楚的可以移步这里有个你肯定能理解的one-hot。

上图是对动物分类进行编码后的表格,我们可以将一个one-hot 编码视为每个图像的概率分布,那么:
第一个图像是狗的概率分布是 1.0 (100%)。

对于第二张图是狐狸的概率分布是1.0(100%)。

以此类推,此时,每个图像的熵都为零。

换句话说,one-hot 编码标签 100% 确定地告诉我们每张图像有哪些动物:第一张图片不可能 90% 是狗,10% 是猫,因为它100%是狗。
因为这是训练的标签,是固定下来的确定分布。
现在,假设有一个神经网络模型来对这些图像进行预测,在神经网络执行完一轮训练迭代后,它可能会对第一张图像(狗)进行如下分类:
![]()
该分类表明,第一张图像越 40%的概率是狗,30%的概率是狐狸,5%的概率是马,5%的概率是老鹰,20%的概率是松鼠。
但是,单从图像标签上看,它100%是一只狗,标签为我们提供了这张图片的准确的概率分布。
![]()
那么,此时如何评价模型预测的效果呢?
我们可以计算利用标签的one-hot编码作为真实概率分布 P,模型预测的结果作为 Q 来计算交叉熵:

结果明显高于标签的零熵,说明预测结果并不是很好。
继续看另一个例子。
假设模型经过了改良,在完成一次推理或者一轮训练后,对第一张图得到了如下的预测,也就是说这张图有98%的概率是狗,这个标签的100%已经差的很少了。
![]()
我们依然计算交叉熵:

可以看到交叉熵变得很低,随着预测变得越来越准确,交叉熵会下降,如果预测是完美的,它就会变为零。
基于此理论,很多分类模型都会利用交叉熵作为模型的损失函数。
在机器学习中,由于多种原因(比如更容易计算导数),对数 log 的计算大部分情况下是使用基数 e 而不是基数 2 ,对数底的改变不会引起任何问题,因为它只改变幅度。

最近开通另一个计算机视觉从入门到调优的专栏,感兴趣的小伙伴可以查看:计算机视觉从入门到调优
相关文章:
为什么要用“交叉熵”做损失函数
大家好啊,我是董董灿。 今天看一个在深度学习中很枯燥但很重要的概念——交叉熵损失函数。 作为一种损失函数,它的重要作用便是可以将“预测值”和“真实值(标签)”进行对比,从而输出 loss 值,直到 loss 值收敛,可以…...
【Android】Android apk 逆向编译
链接:https://pan.baidu.com/s/14r5s9EJwQgeLK5cCb1Gq1Q 提取码:qdqt 解压jadx 在 lib 文件内找到 jadx-gui-1.4.7.jar 打开cmd 执行 :java -jar jadx-gui-1.4.7.jar示列:...
04-详解SpringBoot自动装配的原理,依赖属性配置的实现,源码分析
自动装配原理 依赖属性配置 提供Bean用来封装配置文件中对应属性的值 Data public class Cat {private String name;private Integer age; }Data public class Mouse {private String name;private Integer age; }cartoon:cat:name: "图多盖洛"age: 5mouse:name: …...
[100天算法】-不同路径 III(day 73)
题目描述 在二维网格 grid 上,有 4 种类型的方格:1 表示起始方格。且只有一个起始方格。 2 表示结束方格,且只有一个结束方格。 0 表示我们可以走过的空方格。 -1 表示我们无法跨越的障碍。 返回在四个方向(上、下、左、右&#…...
【c++随笔12】继承
【c随笔12】继承 一、继承1、继承的概念2、3种继承方式3、父类和子类对象赋值转换4、继承中的作用域——隐藏5、继承与友元6、继承与静态成员 二、继承和子类默认成员函数1、子类构造函数 二、子类拷贝构造函数3、子类的赋值重载4、子类析构函数 三、单继承、多继承、菱形继承1…...
Excel中使用数据验证、OFFSET实现自动更新式下拉选项
在excel工作簿中,有两个Sheet工作表。 Sheet1: Sheet2(数据源表): 要实现Sheet1中的“班级”内容,从数据源Sheet2中获取并形成下拉选项,且Sheet2中“班级”内容更新后,Sheet1中“班…...
Android修行手册 - 可变参数中星号什么作用(冷知识)
点击跳转>Unity3D特效百例点击跳转>案例项目实战源码点击跳转>游戏脚本-辅助自动化点击跳转>Android控件全解手册点击跳转>Scratch编程案例点击跳转>软考全系列 👉关于作者 专注于Android/Unity和各种游戏开发技巧,以及各种资源分享&…...
Python与ArcGIS系列(三)视图缩放
目录 0 简述1 在所有图层中缩放至所选要素2 在单独图层中缩放至所选要素3 改变地图范围0 简述 本篇介绍如何利用arcpy实现缩放视图到所选要素以及改变地图范围功能。 对于以及创建的选择集数据,通常需要进行缩放以更好地显示所选要素,要素缩放可分为两种:第一种是在所有图层…...
[ASP]数据库编辑与管理V1.0
本地测试:需要运行 ASP专业调试工具(自己搜索下载) 默认登陆口令:admin 修改口令:打开index.asp找到第3行把admin"admin"改成其他,如admin"abc123" 程序功能齐全,代码精简…...
MyBatis Plus整合Redis实现分布式二级缓存
MyBatis缓存描述 MyBatis提供了两种级别的缓存, 分别时一级缓存和二级缓存。一级缓存是SqlSession级别的缓存,只在SqlSession对象内部存储缓存数据,如果SqlSession对象不一样就无法命中缓存,二级缓存是mapper级别的缓存ÿ…...
如何帮助 3D CAD 设计师实现远程办公
当 3D CAD 设计师需要远程办公时,他们可能需要更强的远程软件,以满足他们的专业需求。比如高清画质,以及支持设备重定向、多显示器支持等功能。3D CAD 设计师如何实现远程办公?接下来我们跟随 Platinum Tank Group 的故事来了解一…...
如何在 Idea 中修改文件的字符集(如:UTF-8)
以 IntelliJ IDEA 2023.2 (Ultimate Edition) 为例,如下: 点击左上角【IntelliJ IDEA】->【Settings…】,如下图: 从弹出页面的左侧导航中找到【Editor】->【File Encodings】,并将 Global Encoding、Project E…...
【C++】单例模式【两种实现方式】
目录 一、了解单例模式前的基础题 1、设计一个类,不能被拷贝 2、设计一个类,只能在堆上创建对象 3、设计一个类,只能在栈上创建对象 4、设计一个类,不能被继承 二、单例模式 1、单例模式的概念 2、单例模式的两种实现方式 …...
php的api接口token简单实现
<?php // 生成 Token function generateToken() {$token bin2hex(random_bytes(16)); // 使用随机字节生成 tokenreturn $token; } // 存储 Token(这里使用一个全局变量来模拟存储) $tokens []; // 验证 Token function validateToken($token) {gl…...
CCNA课程实验-13-PPPoE
目录 实验条件网络拓朴需求 配置实现基础配置模拟运营商ISP配置ISP的DNS配置出口路由器OR基础配置PC1基础配置 出口路由器OR配置PPPOE拨号创建NAT(PAT端口复用) PC1测试结果 实验条件 网络拓朴 需求 OR使用PPPoE的方式向ISP发送拨号的用户名和密码,用户名…...
cocosCreator 之 Bundle使用
版本: v3.4.0 语言: TypeScript 环境: Mac Bundle简介 全名 Asset Bundle(简称AB包),自cocosCreator v2.4开始支持,用于作为资源模块化工具。 允许开发者根据项目需求将贴图、脚本、场景等资源划分在 Bundle 中&am…...
分类网络搭建示例
搭建CNN网络 本章我们来学习一下如何搭建网络,初始化方法,模型的保存,预训练模型的加载方法。本专栏需要搭建的是对分类性能的测试,所以这里我们只以VGG为例。 请注意,这里定义的只是一个简陋的版本,后续一…...
为 Ubuntu 虚拟机构建 SSH 服务器
以校园网环境和VMware为例,关键步骤如下: 安装 SSH 服务: 打开 Ubuntu 虚拟机。打开终端。输入命令 sudo apt-get update 更新软件包列表。输入命令 sudo apt-get install openssh-server 安装 SSH 服务。 配置 SSH 服务: 编辑配…...
SpringBoot--中间件技术-2:整合redis,redis实战小案例,springboot cache,cache简化redis的实现,含代码
SpringBoot整合Redis 实现步骤 导pom文件坐标 <!--redis依赖--> <dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId> </dependency>yaml主配置文件,配置…...
linux rsyslog配置文件详解
1.rsyslog配置文件简介 linux rsyslog配置文件/etc/rsyslog.conf分为三部分:MODULES、GLOBAL DIRECTIVES、RULES ryslog模块说明 模块说明MODULES指定接收日志的协议和端口。若要配置日志服务器,则需要将相应的配置项注释去掉。GLOBAL DIRECTIVES主要用来配置日志模版。指定…...
JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
Ubuntu系统下交叉编译openssl
一、参考资料 OpenSSL&&libcurl库的交叉编译 - hesetone - 博客园 二、准备工作 1. 编译环境 宿主机:Ubuntu 20.04.6 LTSHost:ARM32位交叉编译器:arm-linux-gnueabihf-gcc-11.1.0 2. 设置交叉编译工具链 在交叉编译之前&#x…...
在HarmonyOS ArkTS ArkUI-X 5.0及以上版本中,手势开发全攻略:
在 HarmonyOS 应用开发中,手势交互是连接用户与设备的核心纽带。ArkTS 框架提供了丰富的手势处理能力,既支持点击、长按、拖拽等基础单一手势的精细控制,也能通过多种绑定策略解决父子组件的手势竞争问题。本文将结合官方开发文档,…...
WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成
厌倦手动写WordPress文章?AI自动生成,效率提升10倍! 支持多语言、自动配图、定时发布,让内容创作更轻松! AI内容生成 → 不想每天写文章?AI一键生成高质量内容!多语言支持 → 跨境电商必备&am…...
零基础设计模式——行为型模式 - 责任链模式
第四部分:行为型模式 - 责任链模式 (Chain of Responsibility Pattern) 欢迎来到行为型模式的学习!行为型模式关注对象之间的职责分配、算法封装和对象间的交互。我们将学习的第一个行为型模式是责任链模式。 核心思想:使多个对象都有机会处…...
SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...
华为OD机试-最短木板长度-二分法(A卷,100分)
此题是一个最大化最小值的典型例题, 因为搜索范围是有界的,上界最大木板长度补充的全部木料长度,下界最小木板长度; 即left0,right10^6; 我们可以设置一个候选值x(mid),将木板的长度全部都补充到x,如果成功…...
永磁同步电机无速度算法--基于卡尔曼滤波器的滑模观测器
一、原理介绍 传统滑模观测器采用如下结构: 传统SMO中LPF会带来相位延迟和幅值衰减,并且需要额外的相位补偿。 采用扩展卡尔曼滤波器代替常用低通滤波器(LPF),可以去除高次谐波,并且不用相位补偿就可以获得一个误差较小的转子位…...
Linux中《基础IO》详细介绍
目录 理解"文件"狭义理解广义理解文件操作的归类认知系统角度文件类别 回顾C文件接口打开文件写文件读文件稍作修改,实现简单cat命令 输出信息到显示器,你有哪些方法stdin & stdout & stderr打开文件的方式 系统⽂件I/O⼀种传递标志位…...
Modbus RTU与Modbus TCP详解指南
目录 1. Modbus协议基础 1.1 什么是Modbus? 1.2 Modbus协议历史 1.3 Modbus协议族 1.4 Modbus通信模型 🎭 主从架构 🔄 请求响应模式 2. Modbus RTU详解 2.1 RTU是什么? 2.2 RTU物理层 🔌 连接方式 ⚡ 通信参数 2.3 RTU数据帧格式 📦 帧结构详解 🔍…...
