【Python】Matplotlib-多张图像的显示
一,情景描述
大家在写论文或者实验报告的时候,经常会放多张图片或数据图像在一起形成对比。比如,我现在有一张经过椒盐噪声处理的图像,现在进行三种滤波,分别是均值,高斯,中值滤波,共计四张图像,怎么才能将他们利用matplotlib库放置到一起呢?跟着我一起来写代码吧!
二,实现原理
1.读取图像
用cv2.imread()函数读取原始图像,图像文件放置在了项目文件夹下,图像需要时opencv支持的图像格式(如jpg,png等等)具体见链接:《OpenCV支持的图片格式》_opencv保存windows可以打开的类型-CSDN博客
# encoding:utf-8
import cv2
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号img_1 = cv2.imread('sp_noise.jpg')
img_2 = cv2.imread('medianBlur.jpg')
img_3 = cv2.imread('mean.jpg')
img_4 = cv2.imread('Gaussian.jpg')
2.将BGR转化为RGB
将图像色彩显示转化为RGB通道,否则后续利用matplotlib显示图像的时候会发生色彩通道不兼容导致色彩出现偏差。具体原因见我写的博客:【Bug】当用opencv库的imread()函数读取图像,用matplotlib库的plt.imshow()函数显示图像时,图像色彩出现偏差问题的解决方法-CSDN博客
# 将BGR图像转换为RGB
img_1 = cv2.cvtColor(img_1, cv2.COLOR_BGR2RGB)
img_2 = cv2.cvtColor(img_2, cv2.COLOR_BGR2RGB)
img_3 = cv2.cvtColor(img_3, cv2.COLOR_BGR2RGB)
img_4 = cv2.cvtColor(img_4, cv2.COLOR_BGR2RGB)
3.显示图像
# 显示图形
titles = ['噪声图像', '中值滤波', '均值滤波 ', '高斯滤波'] # 设置每个图像的标题
images = [img_1, img_2, img_3, img_4] #将图像存储到images列表里面
将每个图像标题和图像分别储存到titles和images列表里,方便后续取用,图像标题与图像一一对应,有多少图像存入列表多少。
for i in range(4):plt.subplot(2, 2, i + 1)plt.imshow(images[i])plt.title(titles[i])plt.xticks(), plt.yticks()
plt.show()
for i in range(4):
启动一个循环,循环四次,有多少个图像循环多少次,每次循环代表对一个图像的处理。
plt.subplot(2, 2, i + 1)
:在Matplotlib中创建一个2x2的子图网格,i
的值在每次循环中分别为0,1,2,3,则i + 1
表示子图的位置,即1,2,3,4,下图是2x2的子图网格。
如果是plt.subplot(1, 4, i + 1),则创建是1
x4的子图网格,即一行四列。如图:
plt.imshow(images[i]):
然后使用 plt.imshow
显示列表中的图像,当第一次循环时,i=0,即取出images[0],即第一张图,放到i+1=1的位置。
plt.title(titles[i])
:设置当前子图的标题,根据 titles
中的标题列表选择相应的标题。
plt.xticks([]), plt.yticks([])
:隐藏坐标轴,这将使图像更干净,不显示坐标刻,如果去掉参数[],即显示坐标轴:
三,完整代码
# encoding:utf-8
import cv2
import matplotlib.pyplot as plt
plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False # 用来正常显示负号img_1 = cv2.imread('sp_noise.jpg')
img_2 = cv2.imread('medianBlur.jpg')
img_3 = cv2.imread('mean.jpg')
img_4 = cv2.imread('Gaussian.jpg')
# 将BGR图像转换为RGB
img_1 = cv2.cvtColor(img_1, cv2.COLOR_BGR2RGB)
img_2 = cv2.cvtColor(img_2, cv2.COLOR_BGR2RGB)
img_3 = cv2.cvtColor(img_3, cv2.COLOR_BGR2RGB)
img_4 = cv2.cvtColor(img_4, cv2.COLOR_BGR2RGB)
# 显示图形
titles = ['噪声图像', '中值滤波', '均值滤波 ', '高斯滤波']
images = [img_1, img_2, img_3, img_4]
for i in range(4):plt.subplot(2, 2, i + 1)plt.imshow(images[i])plt.title(titles[i])plt.xticks([]), plt.yticks([])
plt.show()
实现效果:
今日一笑:
《天津中德应用技术大学助学金之原来我才是贫困生》
相关文章:

【Python】Matplotlib-多张图像的显示
一,情景描述 大家在写论文或者实验报告的时候,经常会放多张图片或数据图像在一起形成对比。比如,我现在有一张经过椒盐噪声处理的图像,现在进行三种滤波,分别是均值,高斯,中值滤波,…...

数据库 关系数据理论
问题 数据冗余更新异常插入异常删除异常 一个好的模式应当不会发生插入异常、删除异常和更新异常,数据冗余应尽可能少 数据依赖 定义:一个关系内部属性与属性之间的一种约束关系(该约束关系是通过属性间值的相等与否体现出来数据间相关联…...

网易数帆:云原生向左,低代码向右
网易数帆,前身是网易杭州研究院于2016年孵化的网易云,历经7载探索与沉淀,如今已进化成为覆盖云原生、低代码、大数据和人工智能四大技术赛道的数智化服务提供商,服务于金融、央国企、能源、制造等领域300余家头部企业。 近日&…...
上线亚马逊出口美国审核CPC认证标准内容解析
儿童玩具产品、母婴产品出口美国都需要CPC认证证书和CPSIA报告进行过关清关。 一、什么是CPC认证? CPC认证是Children’sProduct Certificate的英文简称,CPC证书就类似于国内的质检报告,在通过相关检测,出具报告后同时可出具的一…...

SharePoint 的 Web Parts 是什么
Web Parts 可以说是微软 SharePoint 的基础组件。 根据微软自己的描述,Web Parts 是 SharePoint 对内容进行构建的基础,可以想想成一块一块的砖块。 我们需要使用这些砖块来完成一个页面的构建。 我们可以利用 Web Parts 在 SharePoint 中添加文本&am…...

异星工场入门笔记-02-一个重要地学习方法
编程学习地整个过程,最重要的工具就是电脑,其中有一个重点就是可以无成本的重复测试,这大大降低了难度,节约了时间。真正难以学习的不是技术本身,而是材料成本和时间成本,降低这两个因素平地起高楼根本不是…...

pyqt5学习-01 UI界面创建以及生成python代码
前提 环境搭建 打开designer 选择创建主窗体,拖入一个按钮 保存主窗体UI文件为firstMainWin.ui 将UI文件转化为python文件 # 可以把E:\Python\envs\pyqt5stu\Scripts\pyuic5.exe添加到环境变量中 E:\Python\envs\pyqt5stu\Scripts\pyuic5.exe -o firstMainWin.…...

大数据技术与原理实验报告(MapReduce 初级编程实践)
MapReduce 初级编程实践 验环境: 操作系统:Linux(建议Ubuntu16.04); Hadoop版本:3.2.2; (一)编程实现文件合并和去重操作 对于两个输入文件,即文件 A 和…...

Redis 5大数据类型命令解读
目录 Redis key的命令 1、redis字符串(String) 2、redis列表(List) 3、redis哈希表(Hash) 4、redis集合(Set) 5、redis有序集合(ZSet) Redis 命令网站:redis中文文档 Redis key的命令 命令说明示例keys *查看当前库所有的keykeys *…...
数据可视化新秀 DataEase 可否替代 Tableau?
每年数以千计的企业在数据可视化工具中选择 Tableau,但是你知道还有一款强大的工具DataEase,可能会成为你的更佳选择吗?下面是 Tableau 与 DataEase 的功能对比: 1 功能对比 Tableau DataEase 安装包支持平台 Windows MacOS Li…...

Java源码分析(三)ArrayList
ArrayList是我们经常用到的一个集合类。数组在创建时就要给一个明确的大小,而ArrayList的长度是可以动态调整的,因此,也叫动态数组。那么本篇我们一起学习下ArrayList的源码。 一、创建ArrayList 首先,我们从创建ArrayList开始。…...

冒泡排序
贵阳这个地方的天气变化好大呀,前两天晒大太阳,今天就冷的脚抖,简直不要太冷,但是不管怎么样,还是要学习的哟! 冬天来了,春天确实还有一点远! 好了,话不多说,…...
docker基于debian11基础环境安装libreoffice
首先下载指定版本的libreoffice,注意debian11下需要选择Linux (64-bit) (deb) 官方下载地址:https://www.libreoffice.org/download/download-libreoffice/?typedeb-x86_64&version7.6.2&langzh-CN 将文件上传到服务器并解压缩备用,…...

【正点原子STM32连载】 第五十章 FATFS实验 摘自【正点原子】APM32F407最小系统板使用指南
1)实验平台:正点原子stm32f103战舰开发板V4 2)平台购买地址:https://detail.tmall.com/item.htm?id609294757420 3)全套实验源码手册视频下载地址: http://www.openedv.com/thread-340252-1-1.html## 第五…...
12. 机器学习——评价指标
机器学习面试题汇总与解析——评价指标 本章讲解知识点 什么是评价指标?机器学习本专栏适合于Python已经入门的学生或人士,有一定的编程基础。本专栏适合于算法工程师、机器学习、图像处理求职的学生或人士。本专栏针对面试题答案进行了优化,尽量做到好记、言简意赅。这才是…...
代码随想录算法训练营第23期day45|70. 爬楼梯 (进阶)、322. 零钱兑换、279.完全平方数
目录 一、(leetcode 70)爬楼梯 二、(leetcode 322)零钱兑换 三、(leetcode 279)完全平方数 一、(leetcode 70)爬楼梯 力扣题目链接 状态:查看思路后AC 除…...
uniapp公共css
/* 弹性布局 */ .flex{display: flex; } .a-c{align-items: center; } .a-s{align-items: flex-start; } .a-e{align-items: flex-end; } .j-c{justify-content: center; } .j-sb{justify-content: space-between; } .j-s{justify-content: flex-start; } .j-e{justify-content…...

C语言—i++、++i、条件运算符、goto语句、注释
i和i #include <stdio.h> int main() {int i5,j;j i;printf("i%d,j%d\n", i, j);i 5;j i;printf("i%d,j%d\n", i, j);system("pause");return 0;}i6,j6 i6,j5 请按任意键继续. . .条件运算符 goto语句 #include <stdio.h> int …...

Java自学第8课:电商项目(3) - 重新搭建环境
由于之前用的jdk和eclipse,以及mysql并不是视频教程所采用的,在后面运行源码和使用作者提供源码时,总是报错,怀疑: 1 数据库有问题 2 jdk和引入的jar包不匹配 3 其他什么未知的错误? 所以决定卸载jdk e…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄
文|魏琳华 编|王一粟 一场大会,聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中,汇集了学界、创业公司和大厂等三方的热门选手,关于多模态的集中讨论达到了前所未有的热度。其中,…...
今日学习:Spring线程池|并发修改异常|链路丢失|登录续期|VIP过期策略|数值类缓存
文章目录 优雅版线程池ThreadPoolTaskExecutor和ThreadPoolTaskExecutor的装饰器并发修改异常并发修改异常简介实现机制设计原因及意义 使用线程池造成的链路丢失问题线程池导致的链路丢失问题发生原因 常见解决方法更好的解决方法设计精妙之处 登录续期登录续期常见实现方式特…...

如何在网页里填写 PDF 表格?
有时候,你可能希望用户能在你的网站上填写 PDF 表单。然而,这件事并不简单,因为 PDF 并不是一种原生的网页格式。虽然浏览器可以显示 PDF 文件,但原生并不支持编辑或填写它们。更糟的是,如果你想收集表单数据ÿ…...

mac 安装homebrew (nvm 及git)
mac 安装nvm 及git 万恶之源 mac 安装这些东西离不开Xcode。及homebrew 一、先说安装git步骤 通用: 方法一:使用 Homebrew 安装 Git(推荐) 步骤如下:打开终端(Terminal.app) 1.安装 Homebrew…...

[ACTF2020 新生赛]Include 1(php://filter伪协议)
题目 做法 启动靶机,点进去 点进去 查看URL,有 ?fileflag.php说明存在文件包含,原理是php://filter 协议 当它与包含函数结合时,php://filter流会被当作php文件执行。 用php://filter加编码,能让PHP把文件内容…...
Qt 事件处理中 return 的深入解析
Qt 事件处理中 return 的深入解析 在 Qt 事件处理中,return 语句的使用是另一个关键概念,它与 event->accept()/event->ignore() 密切相关但作用不同。让我们详细分析一下它们之间的关系和工作原理。 核心区别:不同层级的事件处理 方…...
书籍“之“字形打印矩阵(8)0609
题目 给定一个矩阵matrix,按照"之"字形的方式打印这个矩阵,例如: 1 2 3 4 5 6 7 8 9 10 11 12 ”之“字形打印的结果为:1,…...

GAN模式奔溃的探讨论文综述(一)
简介 简介:今天带来一篇关于GAN的,对于模式奔溃的一个探讨的一个问题,帮助大家更好的解决训练中遇到的一个难题。 论文题目:An in-depth review and analysis of mode collapse in GAN 期刊:Machine Learning 链接:...

Pandas 可视化集成:数据科学家的高效绘图指南
为什么选择 Pandas 进行数据可视化? 在数据科学和分析领域,可视化是理解数据、发现模式和传达见解的关键步骤。Python 生态系统提供了多种可视化工具,如 Matplotlib、Seaborn、Plotly 等,但 Pandas 内置的可视化功能因其与数据结…...
Spring事务传播机制有哪些?
导语: Spring事务传播机制是后端面试中的必考知识点,特别容易出现在“项目细节挖掘”阶段。面试官通过它来判断你是否真正理解事务控制的本质与异常传播机制。本文将从实战与源码角度出发,全面剖析Spring事务传播机制,帮助你答得有…...