当前位置: 首页 > news >正文

Amazon Bedrock | 大语言模型CLAUDE 2体验

这场生成式AI与大语言模型的饥饿游戏,亚马逊云科技也参与了进来。2023年,亚马逊云科技正式发布了 Amazon Bedrock,是客户使用基础模型构建和扩展生成式AI应用程序的最简单方法,为所有开发者降低使用门槛。在 Bedrock 上,用户可以通过可扩展、可靠且安全的亚马逊云科技托管服务,访问从文本到图像的一系列强大的基础模型。

Amazon Bedrock 汇聚了业内几乎所有领先的基础大语言模型,面对不同应用场景,它可以让人们只需通过单一 API 就能用上来自 AI21 Labs、Anthropic、Cohere、Meta Llama2、Stability AI 等公司的先进大语言模型来构建自己的应用。

那么如何在亚马逊云科技体验这个大语言模型的全家桶 Bedrock 呢?

可以通过亚马逊云科技管理控制台、亚马逊云科技软件开发工具包和开源框架(例如 LangChain)访问 Amazon Bedrock 中可用的基础大语言模型。

在 Amazon Bedrock 控制台中,选择左侧导航窗格中的模型访问权限(Model access),然后启用要访问的模型。启用模型访问权限后,可以选择使用 Playground 的交互方式或者 API 方式来使用可用的大语言模型了。

以 Anthropic 公司产品 CLAUDE 2 为例来进行文本生成(Content Generation):

该示例显示了带有示例响应的提示、示例的推理配置参数设置以及运行该示例的 API 请求。

如果选择 “Open in Playground”,则可以在交互式控制台体验中进一步探索模型和用例。

Amazon Bedrock 提供聊天、文字和图像模型的 Playground。在聊天平台中,可以使用对话聊天界面尝试各种基础大语言模型。以下示例使用 Anthropic 的 CLAUDE 2 模型,来询问中国香港最值得去的餐厅列表:

在评估不同的模型时,应尝试各种提示工程技术和推理配置参数。

在体验交互式大语言模型时,提示工程(Prompt Engineering)是一项非常有用的技能,专注于如何更好地理解基础大语言模型并将其应用于任务和用例。有效的提示词工程可以充分利用基础大语言模型并获得正确而精确的响应。

提示工程(Prompt Engineering),也称为上下文提示,是一种通过不更新模型的权重/参数来引导大语言模型行为朝着特定结果的方法。

以下示例是接着上面截图中 CLAUDE 2 模型的回复,进一步询问铜锣湾附近值得去的餐厅:

然后追问 CLAUDE 2:“好的,谢谢你,CLAUDE。那么,具体来说,铜锣湾最好的餐馆是什么?”,来测试模型对上下文是否有正确的认知:

这就是在 Amazon Bedrock 控制台中使用大语言模型的体验。大语言模型的世界美妙而有趣,能够如此轻松地就能体验世界顶尖的大语言模型,多亏了亚马逊云科技。

相关文章:

Amazon Bedrock | 大语言模型CLAUDE 2体验

这场生成式AI与大语言模型的饥饿游戏,亚马逊云科技也参与了进来。2023年,亚马逊云科技正式发布了 Amazon Bedrock,是客户使用基础模型构建和扩展生成式AI应用程序的最简单方法,为所有开发者降低使用门槛。在 Bedrock 上&#xff0…...

通讯协议学习之路(实践部分):IIC开发实践

通讯协议之路主要分为两部分,第一部分从理论上面讲解各类协议的通讯原理以及通讯格式,第二部分从具体运用上讲解各类通讯协议的具体应用方法。 后续文章会同时发表在个人博客(jason1016.club)、CSDN;视频会发布在bilibili(UID:399951374) 本文…...

『亚马逊云科技产品测评』活动征文|搭建带有“弱”图像处理功能的流媒体服务器

授权声明:本篇文章授权活动官方亚马逊云科技文章转发、改写权,包括不限于在 Developer Centre, 知乎,自媒体平台,第三方开发者媒体等亚马逊云科技官方渠道。 本文基于以下软硬件工具: aws ec2 frp-0.52.3 mediamtx-1.3…...

正交矩阵的定义

对于n阶矩阵A,如果,其中为单位矩阵,为A的转置矩阵,那么就称A为正交矩阵。 对于正交矩阵, 对于正交矩阵,其列向量都是单位向量,行向量都是单位向量...

K8S集群etcd 某个节点数据不一致如何修复 —— 筑梦之路

背景说明 二进制方式安装的k8s集群,etcd集群有3个节点,某天有一台机器hang住了,无法远程ssh登陆,于是被管理员直接重启了,重启后发现k8s集群删除一个deployment应用,多次刷新一会有,一会没有&am…...

selenium/webdriver运行原理与机制

最近在看一些底层的东西。driver翻译过来是驱动,司机的意思。如果将webdriver比做成司机,竟然非常恰当。 我们可以把WebDriver驱动浏览器类比成出租车司机开出租车。在开出租车时有三个角色: 乘客:他/她告诉出租车司机去哪里&a…...

论文阅读[121]使用CAE+XGBoost从荧光光谱中检测和识别饮用水中的有机污染物

【论文基本信息】 标题:Detection and Identification of Organic Pollutants in Drinking Water from Fluorescence Spectra Based on Deep Learning Using Convolutional Autoencoder 标题译名:基于使用卷积自动编码器的深度学习,从荧光光谱…...

Juniper SRX PPPoE配置

直接上配置脚本 6号口接运营商进行拨号 ---------- set interfaces ge-0/0/6 unit 0 encapsulation ppp-over-ether set interfaces ge-0/0/6 description "Connect_to_Modem" set interfaces pp0 unit 0 pppoe-options underlying-interface ge-0/0/6.0 set inte…...

虚拟仪器软件结构VISA

1、什么是VISA VISA是虚拟仪器软件结构(Virtual Instrument Software Architectuere)的简称,是由VXI plug & play系统联盟所统一制定的I/O接口软件标准及其相关规范的总称。一般称这个I/O函数库为VISA库(用于仪器编程的标准I/O函数库)。…...

/etc/init.d/functions: Syntax error: “(“ unexpected (expecting “done“)

一.问题描述: ubuntu系统安装服务时报错: 二.问题解析: Ubuntu安装时默认使用dash,shell脚本命令失败,需要安装bash来运行,长期解决该问题就是重新配置dash 三:问题解决: sudo dpkg-reconfi…...

Google/微端/Amazon/IBM四个厂家在分布式里面提供的服务总结

1.背景 最近在复习分布式的课程,发现总有四家公司——Google/微端/Amazon/IBM绕不过去,而他们又开发了许许多多的服务和架构,需要去记忆,于是乎就整理了一下他们提供的服务 2.Google提供的服务 (1)GFS(Go…...

计网:第一章 概述

目录 1.1计算机网络在信息时代作用 1.2因特网概述 1.3三种交换方式 1.4计算机网络的定义和分类 1.5计算机网络的性能指标 1.6计算机网络的体系结构 基于湖科大教书匠b站计算机网络教学视频以及本校课程老师ppt 整合出的计算机网络学习笔记 根据文章目录,具体内…...

RT-DETR算法优化改进:新颖的多尺度卷积注意力(MSCA),即插即用,助力小目标检测 | NeurIPS2022

💡💡💡本文独家改进: 多尺度卷积注意力(MSCA),有效地提取上下文信息,新颖度高,创新十足。 1)代替RepC3进行使用; 2)MSCAAttention直接作为注意力进行使用; 推荐指数:五星 RT-DETR魔术师专栏介绍: https://blog.csdn.net/m0_63774211/category_12497375.ht…...

基于遗传算法改进的GRNN多输入多输出回归预测,基于多目标遗传算法+GRNN的帕累托前沿求解,基于遗传工具箱调用GRNN模型的多目标求解

目录 背影 遗传算法的原理及步骤 基本定义 编码方式 适应度函数 运算过程 代码 结果分析 展望 完整代码下载链接:grnn多输入多输出训练测试,遗传算法改进grnn神经网络,NSGA-2多目标遗传算法,多目标遗传算法和grnn结合优化资源-CSDN文库 https://download.csdn.net/downloa…...

vue2按需导入Element(vite打包)

1.安装element 说明:-S是生产依赖。 npm install element-ui2 -S 2.安装babel-plugin-component 说明:-D是开发模式使用。 npm install babel-plugin-component -D 3. vite.config.js 说明:借助 babel-plugin-component ,我们可…...

力扣117双周赛

第 117 场双周赛 给小朋友们分糖果 I 同T2 给小朋友们分糖果 II 数学 class Solution { public:long long distributeCandies(int n, int limit) {long long ans 0;for (int i 0; i < min(n, limit); i) {if (n - i < limit) {ans n - i 1;} else if (n - i <…...

SPI简介及FPGA通用MOSI模块实现

简介 SPI&#xff08;Serial Peripheral Interface&#xff0c;串行外围设备接口&#xff09;通讯协议&#xff0c;是Motorola公司提出的一种同步串行接口技术。是一种高速、全双工、同步通信总线。在芯片中只占用四根管脚用来控制及数据传输。 优缺点&#xff1a; SPI通讯协…...

K8S篇之K8S详解

一、K8S简介 k8s全称kubernetes&#xff0c;是为容器服务而生的一个可移植容器的编排管理工具。k8s目前已经主导了云业务流程&#xff0c;推动了微服务架构等热门技术的普及和落地。 k8s是自动化容器操作的开源平台。这些容器操作包括&#xff1a;部署、调度和节点集群间扩展。…...

进博会再现上亿大单 EZZ携手HIC海橙嗨选签署2024年度合作备忘录

正在举行的第六届中国国际进口博览会上&#xff0c;再现上亿大单。11月6日&#xff0c;在澳大利亚新南威尔士州政府代表的见证下&#xff0c;澳交所基因组龙头上市公司EZZ生命科学和中国跨境社交电商龙头HIC海橙嗨选签署2024合作备忘录&#xff0c;在未来的一年&#xff0c;EZZ…...

深度学习基于python+TensorFlow+Django的花朵识别系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介 二、功能三、系统四. 总结 一项目简介 花朵识别系统&#xff0c;基于Python实现&#xff0c;深度学习卷积神经网络&#xff0c;通过TensorFlow搭建卷积神经…...

椭圆曲线密码学(ECC)

一、ECC算法概述 椭圆曲线密码学&#xff08;Elliptic Curve Cryptography&#xff09;是基于椭圆曲线数学理论的公钥密码系统&#xff0c;由Neal Koblitz和Victor Miller在1985年独立提出。相比RSA&#xff0c;ECC在相同安全强度下密钥更短&#xff08;256位ECC ≈ 3072位RSA…...

GitHub 趋势日报 (2025年06月08日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 884 cognee 566 dify 414 HumanSystemOptimization 414 omni-tools 321 note-gen …...

C++使用 new 来创建动态数组

问题&#xff1a; 不能使用变量定义数组大小 原因&#xff1a; 这是因为数组在内存中是连续存储的&#xff0c;编译器需要在编译阶段就确定数组的大小&#xff0c;以便正确地分配内存空间。如果允许使用变量来定义数组的大小&#xff0c;那么编译器就无法在编译时确定数组的大…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

Web中间件--tomcat学习

Web中间件–tomcat Java虚拟机详解 什么是JAVA虚拟机 Java虚拟机是一个抽象的计算机&#xff0c;它可以执行Java字节码。Java虚拟机是Java平台的一部分&#xff0c;Java平台由Java语言、Java API和Java虚拟机组成。Java虚拟机的主要作用是将Java字节码转换为机器代码&#x…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...

【Linux手册】探秘系统世界:从用户交互到硬件底层的全链路工作之旅

目录 前言 操作系统与驱动程序 是什么&#xff0c;为什么 怎么做 system call 用户操作接口 总结 前言 日常生活中&#xff0c;我们在使用电子设备时&#xff0c;我们所输入执行的每一条指令最终大多都会作用到硬件上&#xff0c;比如下载一款软件最终会下载到硬盘上&am…...

WEB3全栈开发——面试专业技能点P4数据库

一、mysql2 原生驱动及其连接机制 概念介绍 mysql2 是 Node.js 环境中广泛使用的 MySQL 客户端库&#xff0c;基于 mysql 库改进而来&#xff0c;具有更好的性能、Promise 支持、流式查询、二进制数据处理能力等。 主要特点&#xff1a; 支持 Promise / async-await&#xf…...

拟合问题处理

在机器学习中&#xff0c;核心任务通常围绕模型训练和性能提升展开&#xff0c;但你提到的 “优化训练数据解决过拟合” 和 “提升泛化性能解决欠拟合” 需要结合更准确的概念进行梳理。以下是对机器学习核心任务的系统复习和修正&#xff1a; 一、机器学习的核心任务框架 机…...