当前位置: 首页 > news >正文

采集摄像头数据的Golang应用

引言

如今,我们生活在一个信息爆炸的时代,数字化的发展给我们带来了无限的便利。在生活中,我们经常需要使用摄像头来进行图像采集,比如监控系统、人脸识别系统等。本文将介绍如何使用Golang语言来采集摄像头数据,并进行简单的图像处理。

环境准备

首先,我们需要准备好Golang开发环境。你可以从Golang官网(https://golang.org/)下载最新的稳定版本并进行安装。安装完成后,你可以使用go version命令来验证安装是否成功。

另外,我们还需要使用针对Golang的摄像头库。在本文中,我们将使用go-opencv库来进行摄像头数据的采集和图像处理。你可以使用以下命令安装该库:

go get -u github.com/hybridgroup/go-opencv

安装完成后,我们可以开始编写代码。

代码实现

首先,我们需要导入必要的包和库:

package mainimport ("fmt""github.com/hybridgroup/go-opencv/core""github.com/hybridgroup/go-opencv/highgui"
)

接下来,我们创建一个函数captureCamera来采集摄像头数据:

func captureCamera() {window := highgui.NewWindow("Camera Window")capture := highgui.NewCameraCapture(0)if capture == nil {panic("Failed to open camera")}for {frame := capture.QueryFrame()window.ShowImage(frame)key := highgui.WaitKey(10)// 按Esc键退出if key == 27 {break}}window.DestroyWindow()
}

在这段代码中,我们创建了一个名为window的窗口和一个名为capture的摄像头采集对象。然后,我们通过循环不断地采集摄像头数据并显示在窗口中,直到用户按下Esc键退出。

最后,我们在main函数中调用captureCamera函数来进行摄像头数据的采集:

func main() {fmt.Println("Starting camera capture...")captureCamera()fmt.Println("Camera capture stopped.")
}

运行和测试

完成代码编写后,我们可以使用以下命令来编译和运行代码:

go run main.go

如果一切正常,你会看到一个窗口弹出并展示摄像头采集的数据。按下Esc键即可退出。

图像处理

通过上面的代码,我们已经能够实时采集摄像头数据并显示在窗口中了。接下来,我们可以进行一些简单的图像处理。

例如,我们可以将采集到的彩色图像转换成灰度图像:

func captureCamera() {// ...window := highgui.NewWindow("Camera Window")capture := highgui.NewCameraCapture(0)if capture == nil {panic("Failed to open camera")}for {frame := capture.QueryFrame()grayFrame := core.NewMat()core.CvtColor(frame, grayFrame, core.CV_BGR2GRAY)window.ShowImage(grayFrame)grayFrame.Release()// ...}// ...
}

在上述代码中,我们使用core.CvtColor函数将彩色图像frame转换成灰度图像grayFrame,然后再显示在窗口中。

我们还可以进行更多复杂的图像处理,比如边缘检测、人脸识别等,这超出了本文的范围。你可以参考go-opencv库的文档(https://godoc.org/github.com/hybridgroup/go-opencv)了解更多的图像处理功能。

案例

案例一:头部姿态估计

package mainimport ("fmt""github.com/hybridgroup/go-opencv/core""github.com/hybridgroup/go-opencv/highgui""github.com/hybridgroup/go-opencv/imgproc"
)func main() {capture, err := highgui.NewCameraCapture(0)if err != nil {fmt.Println("无法打开摄像头")return}window := highgui.NewWindow("Camera Window")if window == nil {panic("无法创建窗口")}for {frame := capture.QueryFrame()if frame == nil {break}gray := core.NewMat()imgproc.CvtColor(frame, gray, imgproc.CV_BGR2GRAY)imgproc.EqualizeHist(gray, gray)cascade := imgproc.LoadHaarClassifierCascade("haarcascade_frontalface_alt.xml")rectangles := cascade.DetectObjects(gray)for _, rect := range rectangles {faceImg := frame.GetSubRect(rect)eyesCascade := imgproc.LoadHaarClassifierCascade("haarcascade_eye.xml")eyes := eyesCascade.DetectObjects(faceImg)var leftEye, rightEye core.Rectfor _, eye := range eyes {if eye.X()+eye.Height()/2 < faceImg.Width()/2 {leftEye = eye} else {rightEye = eye}}if leftEye != nil && rightEye != nil {imgproc.Rectangle(frame, rect, core.Scalar{255, 0, 0, 0}, 2, 1, 0)imgproc.Rectangle(faceImg, leftEye, core.Scalar{0, 255, 0, 0}, 2, 1, 0)imgproc.Rectangle(faceImg, rightEye, core.Scalar{0, 255, 0, 0}, 2, 1, 0)}}window.ShowImage(frame)window.WaitKey(1)}window.DestroyWindow()
}

这个案例使用了OpenCV中的级联分类器(Cascade Classifier)来检测人脸和眼睛,并通过在图像中绘制矩形来标记它们的位置。使用棕色矩形框标记人脸,绿色矩形框标记眼睛。本案例展示了通过摄像头采集的实时视频流,实时进行头部姿态估计。

案例二:实时人脸识别

package mainimport ("fmt""github.com/hybridgroup/go-opencv/core""github.com/hybridgroup/go-opencv/highgui""github.com/hybridgroup/go-opencv/imgproc"
)func main() {capture, err := highgui.NewCameraCapture(0)if err != nil {fmt.Println("无法打开摄像头")return}window := highgui.NewWindow("Camera Window")if window == nil {panic("无法创建窗口")}cascade := imgproc.LoadHaarClassifierCascade("haarcascade_frontalface_alt.xml")for {frame := capture.QueryFrame()if frame == nil {break}gray := core.NewMat()imgproc.CvtColor(frame, gray, imgproc.CV_BGR2GRAY)imgproc.EqualizeHist(gray, gray)rectangles := cascade.DetectObjects(gray)for _, rect := range rectangles {imgproc.Rectangle(frame, rect, core.Scalar{255, 0, 0, 0}, 2, 1, 0)}window.ShowImage(frame)window.WaitKey(1)}window.DestroyWindow()
}

这个案例使用了级联分类器来检测人脸,并在摄像头采集的实时视频流中标记人脸的位置。使用蓝色矩形框标记检测到的人脸。该案例展示了实时人脸识别的功能。

案例三:实时目标检测

package mainimport ("fmt""github.com/hybridgroup/go-opencv/core""github.com/hybridgroup/go-opencv/highgui""github.com/hybridgroup/go-opencv/imgproc"
)func main() {capture, err := highgui.NewCameraCapture(0)if err != nil {fmt.Println("无法打开摄像头")return}window := highgui.NewWindow("Camera Window")if window == nil {panic("无法创建窗口")}cascade := imgproc.LoadHaarClassifierCascade("haarcascade_fullbody.xml")for {frame := capture.QueryFrame()if frame == nil {break}gray := core.NewMat()imgproc.CvtColor(frame, gray, imgproc.CV_BGR2GRAY)imgproc.EqualizeHist(gray, gray)rectangles := cascade.DetectObjects(gray)for _, rect := range rectangles {imgproc.Rectangle(frame, rect, core.Scalar{255, 0, 0, 0}, 2, 1, 0)}window.ShowImage(frame)window.WaitKey(1)}window.DestroyWindow()
}

这个案例使用了级联分类器来检测全身,并在摄像头采集的实时视频流中标记全身的位置。使用红色矩形框标记检测到的全身。该案例展示了实时目标检测的功能。

这些案例只是Golang中采集摄像头数据的一小部分应用,希望能够为您提供一些参考。您可以根据您的需求进一步扩展和修改代码。

总结

本文介绍了如何使用Golang语言来采集摄像头数据,并进行简单的图像处理。通过使用go-opencv库,你可以方便地进行摄像头数据的采集和图像处理,从而满足各种应用的需求。

如果你对图像处理有更深入的需求,你可以进一步研究go-opencv库,并自行扩展代码。Golang作为一种简洁高效的编程语言,具备处理图像和多媒体数据的能力。

希望本文能够为你提供有关Golang采集摄像头数据的知识,并激发你对图像处理的兴趣和研究。祝你在实际应用中取得更多的进展!

相关文章:

采集摄像头数据的Golang应用

引言 如今&#xff0c;我们生活在一个信息爆炸的时代&#xff0c;数字化的发展给我们带来了无限的便利。在生活中&#xff0c;我们经常需要使用摄像头来进行图像采集&#xff0c;比如监控系统、人脸识别系统等。本文将介绍如何使用Golang语言来采集摄像头数据&#xff0c;并进…...

Axure9学习

产品经理零基础入门&#xff08;四&#xff09;Axure 原型图教程&#xff0c;2小时学会_哔哩哔哩_bilibili 1. ① 页面对应页面个数&#xff0c;概要对应每个页面的具体内容 ② 文件类型 ③ 备用间隔改为5分钟 ④ 当多个元件重叠&#xff0c;想把在下面的元件b直接拖出来&…...

使用gitflow时如何合并hotfix

前言 在使用 git flow 流程时, 对于项目型的部署项目经常会遇到一个问题, 就是现场项目在使用历史版本时发现的一些问题需要修复, 但升级可能会有很大的风险或客户不愿意升级, 这时就要求基于历史版本进行 hotfix 修复. 基于历史发布版本的缺陷修复方式不同于最新发布版本的补…...

(七)Spring源码解析:Spring事务

对于事务来说&#xff0c;是我们平时在基于业务逻辑编码过程中不可或缺的一部分&#xff0c;它对于保证业务及数据逻辑原子性立下了汗马功劳。那么&#xff0c;我们基于Spring的声明式事务&#xff0c;可以方便我们对事务逻辑代码进行编写&#xff0c;那么在开篇的第一部分&…...

Stable Diffusion 是否使用 GPU?

在线工具推荐&#xff1a; Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 3D数字孪生场景编辑器 Stable Diffusion 已迅速成为最流行的生成式 AI 工具之一&#xff0c;用于通过文本到图像扩散模型创建图像。但是&#xff0c;它需…...

DevOps平台两种实现模式

我们需要一个DevOps平台 要讨论DevOps平台的实现模式&#xff0c;似乎就必须讨论它们的概念定义。然而&#xff0c;当大家要讨论它们的定义时&#xff0c;就像在讨论薛定谔的猫。 A公司认为它不过是自动化执行Shell脚本的平台&#xff0c;有些人认为它是一场运动&#xff0c;另…...

Java 简单实现一个 UDP 回显服务器

文章目录 UDP 服务端UDP 客户端实现效果UDP 服务端(实现字典功能)总结 UDP 服务端 package network;import java.io.IOException; import java.net.DatagramPacket; import java.net.DatagramSocket; import java.net.SocketException;public class UdpEchoServer {private Da…...

element ui中Select 选择器,自定义显示内容

正常情况下&#xff0c;下拉框选项展示内容&#xff0c;就是选择后展示的label内容 如图所示&#xff1a; 但是要想自定义选项内容&#xff0c;但是展示内容不是选项label的内容&#xff0c;可以在el-option标签内增加div进行自定义选项label展示&#xff0c;但选择后结果展示…...

机器视觉行业,日子不过了吗?都进入打折潮,双11只是一个借口,打广告出新招,日子不好过是真的

我就不上图了&#xff0c;大家注意各个机器视觉公司公众号&#xff0c;为什么打折&#xff1f;打广告也只是宣传手段&#xff0c;进入打折潮&#xff0c;内卷严重&#xff0c;价格战变成白刃战&#xff0c;肯定日子不好过了。...

【手动创建UIWindow Objective-C语言】

一、上节课,我们讲了控制器View的懒加载: 1.什么时候会调用这个懒加载呢,用我们直接,控制器self.view self.view的时候: 什么时候,调用它这个self.view, 就要去加载控制器的view, self.view 加载控制器的view 我们给大家演示过了,这个大家已经清楚了,我们给大家说…...

【学习辅助】Axure手机时间管理APP原型,告别手机控番茄任务模板

作品概况 页面数量&#xff1a;共 30 页 兼容软件&#xff1a;Axure RP 9/10&#xff0c;不支持低版本 应用领域&#xff1a;时间管理、系统工具 作品申明&#xff1a;页面内容仅用于功能演示&#xff0c;无实际功能 作品特色 本品为「手机时间管理」APP原型&#xff0c;…...

[PyTorch][chapter 62][强化学习-基本概念]

前言&#xff1a; 目录&#xff1a; 强化学习概念 马尔科夫决策 Bellman 方程 格子世界例子 一 强化学习 强化学习 必须在尝试之后&#xff0c;才能发现哪些行为会导致奖励的最大化。 当前的行为可能不仅仅会影响即时奖赏&#xff0c;还有影响下一步奖赏和所有奖赏 强…...

使用 Stable Diffusion Img2Img 生成、放大、模糊和增强

在线工具推荐&#xff1a; Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 3D数字孪生场景编辑器 Stable Diffusion 2022.1 Img5Img 于 2 年发布&#xff0c;是一款革命性的深度学习模型&#xff0c;正在重新定义和推动照片级真实…...

【Git】第一篇:Git安装(centos)

git查看安装版本 以我自己的centos7.6为例&#xff0c;我们可以输入以下指令查看自己是否安装了git. git --version安装了的话就会显示自己安装的版本。 git 安装 安装很简单&#xff0c;一条命令即可 sudo yum install git -ygit 卸载 sudo yum remove git -y...

在uniapp中通过自定义事件使页面之间传递数据

在uniapp中&#xff0c;可以使用uni.$emit来在页面之间传递数据。uni.emit是一个事件触发器&#xff0c;可以在一个页面中触发一个自定义事件&#xff0c;并在其他页面中监听和处理这个事件。 // A页面 uni.$emit(dataChanged, { message: Hello from A page! });在接收数据的…...

【Windows Docker:安装nginx】

拉镜像 docker pull nginx运行初始镜像 docker run -d -p 80:80 --name nginx nginx拷贝文件 docker cp nginx:/etc/nginx/nginx.conf D:/dockerFile/nginx/nginx.conf docker cp nginx:/etc/nginx/conf.d D:/dockerFile/nginx/conf.d docker cp nginx:/usr/share/nginx/htm…...

ElasticSearch7.x - HTTP 操作 - 查询文档操作

查询索引下的所有文档 http://192.168.254.101:9200/shopping/_search 条件查询 请求路径上添加条件:http://192.168.254.101:9200/shopping/_search?q=category:小米 请求体上添加条件:http://192.168.254.101:9200/shopping/_search 请求体内容 {"query" :{&qu…...

基于opencv+tensorflow+神经网络的智能银行卡卡号识别系统——深度学习算法应用(含python、模型源码)+数据集(一)

目录 前言总体设计系统整体结构图系统流程图 运行环境Python环境TensorFlow 环境OpenCV环境 相关其它博客工程源代码下载其它资料下载 前言 本项目基于从网络获取的多种银行卡数据集&#xff0c;采用OpenCV库的函数进行图像处理&#xff0c;并通过神经网络进行模型训练。最终实…...

如何使用`open-uri`模块

首先&#xff0c;我们需要使用open-uri模块来打开网页&#xff0c;并使用Nokogiri模块来解析网页内容。然后&#xff0c;我们可以使用Nokogiri的css方法来选择我们想要的元素&#xff0c;例如标题&#xff0c;作者&#xff0c;内容等。最后&#xff0c;我们可以使用open-uri模块…...

activiti7审批驳回,控制变量无法覆盖,导致无限循环驳回,流程无法结束

项目开发过程中使用工作流&#xff0c;因此考虑使用activiti7做完工作流引擎。项目开发过程中&#xff0c;发现流程驳回时&#xff0c;再次执行流程&#xff0c;控制变量无法覆盖&#xff0c;导致无限循环驳回&#xff0c;流程无法结束。流程图如下图所示&#xff1a; 驳回控制…...

蓝牙 BLE 扫描面试题大全(2):进阶面试题与实战演练

前文覆盖了 BLE 扫描的基础概念与经典问题蓝牙 BLE 扫描面试题大全(1)&#xff1a;从基础到实战的深度解析-CSDN博客&#xff0c;但实际面试中&#xff0c;企业更关注候选人对复杂场景的应对能力&#xff08;如多设备并发扫描、低功耗与高发现率的平衡&#xff09;和前沿技术的…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

c#开发AI模型对话

AI模型 前面已经介绍了一般AI模型本地部署&#xff0c;直接调用现成的模型数据。这里主要讲述讲接口集成到我们自己的程序中使用方式。 微软提供了ML.NET来开发和使用AI模型&#xff0c;但是目前国内可能使用不多&#xff0c;至少实践例子很少看见。开发训练模型就不介绍了&am…...

rnn判断string中第一次出现a的下标

# coding:utf8 import torch import torch.nn as nn import numpy as np import random import json""" 基于pytorch的网络编写 实现一个RNN网络完成多分类任务 判断字符 a 第一次出现在字符串中的位置 """class TorchModel(nn.Module):def __in…...

Python 包管理器 uv 介绍

Python 包管理器 uv 全面介绍 uv 是由 Astral&#xff08;热门工具 Ruff 的开发者&#xff09;推出的下一代高性能 Python 包管理器和构建工具&#xff0c;用 Rust 编写。它旨在解决传统工具&#xff08;如 pip、virtualenv、pip-tools&#xff09;的性能瓶颈&#xff0c;同时…...

Spring是如何解决Bean的循环依赖:三级缓存机制

1、什么是 Bean 的循环依赖 在 Spring框架中,Bean 的循环依赖是指多个 Bean 之间‌互相持有对方引用‌,形成闭环依赖关系的现象。 多个 Bean 的依赖关系构成环形链路,例如: 双向依赖:Bean A 依赖 Bean B,同时 Bean B 也依赖 Bean A(A↔B)。链条循环: Bean A → Bean…...

计算机基础知识解析:从应用到架构的全面拆解

目录 前言 1、 计算机的应用领域&#xff1a;无处不在的数字助手 2、 计算机的进化史&#xff1a;从算盘到量子计算 3、计算机的分类&#xff1a;不止 “台式机和笔记本” 4、计算机的组件&#xff1a;硬件与软件的协同 4.1 硬件&#xff1a;五大核心部件 4.2 软件&#…...

OD 算法题 B卷【正整数到Excel编号之间的转换】

文章目录 正整数到Excel编号之间的转换 正整数到Excel编号之间的转换 excel的列编号是这样的&#xff1a;a b c … z aa ab ac… az ba bb bc…yz za zb zc …zz aaa aab aac…; 分别代表以下的编号1 2 3 … 26 27 28 29… 52 53 54 55… 676 677 678 679 … 702 703 704 705;…...

Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成

一个面向 Java 开发者的 Sring-Ai 示例工程项目&#xff0c;该项目是一个 Spring AI 快速入门的样例工程项目&#xff0c;旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计&#xff0c;每个模块都专注于特定的功能领域&#xff0c;便于学习和…...