采集摄像头数据的Golang应用
引言
如今,我们生活在一个信息爆炸的时代,数字化的发展给我们带来了无限的便利。在生活中,我们经常需要使用摄像头来进行图像采集,比如监控系统、人脸识别系统等。本文将介绍如何使用Golang语言来采集摄像头数据,并进行简单的图像处理。
环境准备
首先,我们需要准备好Golang开发环境。你可以从Golang官网(https://golang.org/)下载最新的稳定版本并进行安装。安装完成后,你可以使用go version命令来验证安装是否成功。
另外,我们还需要使用针对Golang的摄像头库。在本文中,我们将使用go-opencv库来进行摄像头数据的采集和图像处理。你可以使用以下命令安装该库:
go get -u github.com/hybridgroup/go-opencv
安装完成后,我们可以开始编写代码。
代码实现
首先,我们需要导入必要的包和库:
package mainimport ("fmt""github.com/hybridgroup/go-opencv/core""github.com/hybridgroup/go-opencv/highgui"
)
接下来,我们创建一个函数captureCamera来采集摄像头数据:
func captureCamera() {window := highgui.NewWindow("Camera Window")capture := highgui.NewCameraCapture(0)if capture == nil {panic("Failed to open camera")}for {frame := capture.QueryFrame()window.ShowImage(frame)key := highgui.WaitKey(10)// 按Esc键退出if key == 27 {break}}window.DestroyWindow()
}
在这段代码中,我们创建了一个名为window的窗口和一个名为capture的摄像头采集对象。然后,我们通过循环不断地采集摄像头数据并显示在窗口中,直到用户按下Esc键退出。
最后,我们在main函数中调用captureCamera函数来进行摄像头数据的采集:
func main() {fmt.Println("Starting camera capture...")captureCamera()fmt.Println("Camera capture stopped.")
}
运行和测试
完成代码编写后,我们可以使用以下命令来编译和运行代码:
go run main.go
如果一切正常,你会看到一个窗口弹出并展示摄像头采集的数据。按下Esc键即可退出。
图像处理
通过上面的代码,我们已经能够实时采集摄像头数据并显示在窗口中了。接下来,我们可以进行一些简单的图像处理。
例如,我们可以将采集到的彩色图像转换成灰度图像:
func captureCamera() {// ...window := highgui.NewWindow("Camera Window")capture := highgui.NewCameraCapture(0)if capture == nil {panic("Failed to open camera")}for {frame := capture.QueryFrame()grayFrame := core.NewMat()core.CvtColor(frame, grayFrame, core.CV_BGR2GRAY)window.ShowImage(grayFrame)grayFrame.Release()// ...}// ...
}
在上述代码中,我们使用core.CvtColor函数将彩色图像frame转换成灰度图像grayFrame,然后再显示在窗口中。
我们还可以进行更多复杂的图像处理,比如边缘检测、人脸识别等,这超出了本文的范围。你可以参考go-opencv库的文档(https://godoc.org/github.com/hybridgroup/go-opencv)了解更多的图像处理功能。
案例
案例一:头部姿态估计
package mainimport ("fmt""github.com/hybridgroup/go-opencv/core""github.com/hybridgroup/go-opencv/highgui""github.com/hybridgroup/go-opencv/imgproc"
)func main() {capture, err := highgui.NewCameraCapture(0)if err != nil {fmt.Println("无法打开摄像头")return}window := highgui.NewWindow("Camera Window")if window == nil {panic("无法创建窗口")}for {frame := capture.QueryFrame()if frame == nil {break}gray := core.NewMat()imgproc.CvtColor(frame, gray, imgproc.CV_BGR2GRAY)imgproc.EqualizeHist(gray, gray)cascade := imgproc.LoadHaarClassifierCascade("haarcascade_frontalface_alt.xml")rectangles := cascade.DetectObjects(gray)for _, rect := range rectangles {faceImg := frame.GetSubRect(rect)eyesCascade := imgproc.LoadHaarClassifierCascade("haarcascade_eye.xml")eyes := eyesCascade.DetectObjects(faceImg)var leftEye, rightEye core.Rectfor _, eye := range eyes {if eye.X()+eye.Height()/2 < faceImg.Width()/2 {leftEye = eye} else {rightEye = eye}}if leftEye != nil && rightEye != nil {imgproc.Rectangle(frame, rect, core.Scalar{255, 0, 0, 0}, 2, 1, 0)imgproc.Rectangle(faceImg, leftEye, core.Scalar{0, 255, 0, 0}, 2, 1, 0)imgproc.Rectangle(faceImg, rightEye, core.Scalar{0, 255, 0, 0}, 2, 1, 0)}}window.ShowImage(frame)window.WaitKey(1)}window.DestroyWindow()
}
这个案例使用了OpenCV中的级联分类器(Cascade Classifier)来检测人脸和眼睛,并通过在图像中绘制矩形来标记它们的位置。使用棕色矩形框标记人脸,绿色矩形框标记眼睛。本案例展示了通过摄像头采集的实时视频流,实时进行头部姿态估计。
案例二:实时人脸识别
package mainimport ("fmt""github.com/hybridgroup/go-opencv/core""github.com/hybridgroup/go-opencv/highgui""github.com/hybridgroup/go-opencv/imgproc"
)func main() {capture, err := highgui.NewCameraCapture(0)if err != nil {fmt.Println("无法打开摄像头")return}window := highgui.NewWindow("Camera Window")if window == nil {panic("无法创建窗口")}cascade := imgproc.LoadHaarClassifierCascade("haarcascade_frontalface_alt.xml")for {frame := capture.QueryFrame()if frame == nil {break}gray := core.NewMat()imgproc.CvtColor(frame, gray, imgproc.CV_BGR2GRAY)imgproc.EqualizeHist(gray, gray)rectangles := cascade.DetectObjects(gray)for _, rect := range rectangles {imgproc.Rectangle(frame, rect, core.Scalar{255, 0, 0, 0}, 2, 1, 0)}window.ShowImage(frame)window.WaitKey(1)}window.DestroyWindow()
}
这个案例使用了级联分类器来检测人脸,并在摄像头采集的实时视频流中标记人脸的位置。使用蓝色矩形框标记检测到的人脸。该案例展示了实时人脸识别的功能。
案例三:实时目标检测
package mainimport ("fmt""github.com/hybridgroup/go-opencv/core""github.com/hybridgroup/go-opencv/highgui""github.com/hybridgroup/go-opencv/imgproc"
)func main() {capture, err := highgui.NewCameraCapture(0)if err != nil {fmt.Println("无法打开摄像头")return}window := highgui.NewWindow("Camera Window")if window == nil {panic("无法创建窗口")}cascade := imgproc.LoadHaarClassifierCascade("haarcascade_fullbody.xml")for {frame := capture.QueryFrame()if frame == nil {break}gray := core.NewMat()imgproc.CvtColor(frame, gray, imgproc.CV_BGR2GRAY)imgproc.EqualizeHist(gray, gray)rectangles := cascade.DetectObjects(gray)for _, rect := range rectangles {imgproc.Rectangle(frame, rect, core.Scalar{255, 0, 0, 0}, 2, 1, 0)}window.ShowImage(frame)window.WaitKey(1)}window.DestroyWindow()
}
这个案例使用了级联分类器来检测全身,并在摄像头采集的实时视频流中标记全身的位置。使用红色矩形框标记检测到的全身。该案例展示了实时目标检测的功能。
这些案例只是Golang中采集摄像头数据的一小部分应用,希望能够为您提供一些参考。您可以根据您的需求进一步扩展和修改代码。
总结
本文介绍了如何使用Golang语言来采集摄像头数据,并进行简单的图像处理。通过使用go-opencv库,你可以方便地进行摄像头数据的采集和图像处理,从而满足各种应用的需求。
如果你对图像处理有更深入的需求,你可以进一步研究go-opencv库,并自行扩展代码。Golang作为一种简洁高效的编程语言,具备处理图像和多媒体数据的能力。
希望本文能够为你提供有关Golang采集摄像头数据的知识,并激发你对图像处理的兴趣和研究。祝你在实际应用中取得更多的进展!
相关文章:
采集摄像头数据的Golang应用
引言 如今,我们生活在一个信息爆炸的时代,数字化的发展给我们带来了无限的便利。在生活中,我们经常需要使用摄像头来进行图像采集,比如监控系统、人脸识别系统等。本文将介绍如何使用Golang语言来采集摄像头数据,并进…...
Axure9学习
产品经理零基础入门(四)Axure 原型图教程,2小时学会_哔哩哔哩_bilibili 1. ① 页面对应页面个数,概要对应每个页面的具体内容 ② 文件类型 ③ 备用间隔改为5分钟 ④ 当多个元件重叠,想把在下面的元件b直接拖出来&…...
使用gitflow时如何合并hotfix
前言 在使用 git flow 流程时, 对于项目型的部署项目经常会遇到一个问题, 就是现场项目在使用历史版本时发现的一些问题需要修复, 但升级可能会有很大的风险或客户不愿意升级, 这时就要求基于历史版本进行 hotfix 修复. 基于历史发布版本的缺陷修复方式不同于最新发布版本的补…...
(七)Spring源码解析:Spring事务
对于事务来说,是我们平时在基于业务逻辑编码过程中不可或缺的一部分,它对于保证业务及数据逻辑原子性立下了汗马功劳。那么,我们基于Spring的声明式事务,可以方便我们对事务逻辑代码进行编写,那么在开篇的第一部分&…...
Stable Diffusion 是否使用 GPU?
在线工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 3D数字孪生场景编辑器 Stable Diffusion 已迅速成为最流行的生成式 AI 工具之一,用于通过文本到图像扩散模型创建图像。但是,它需…...
DevOps平台两种实现模式
我们需要一个DevOps平台 要讨论DevOps平台的实现模式,似乎就必须讨论它们的概念定义。然而,当大家要讨论它们的定义时,就像在讨论薛定谔的猫。 A公司认为它不过是自动化执行Shell脚本的平台,有些人认为它是一场运动,另…...
Java 简单实现一个 UDP 回显服务器
文章目录 UDP 服务端UDP 客户端实现效果UDP 服务端(实现字典功能)总结 UDP 服务端 package network;import java.io.IOException; import java.net.DatagramPacket; import java.net.DatagramSocket; import java.net.SocketException;public class UdpEchoServer {private Da…...
element ui中Select 选择器,自定义显示内容
正常情况下,下拉框选项展示内容,就是选择后展示的label内容 如图所示: 但是要想自定义选项内容,但是展示内容不是选项label的内容,可以在el-option标签内增加div进行自定义选项label展示,但选择后结果展示…...
机器视觉行业,日子不过了吗?都进入打折潮,双11只是一个借口,打广告出新招,日子不好过是真的
我就不上图了,大家注意各个机器视觉公司公众号,为什么打折?打广告也只是宣传手段,进入打折潮,内卷严重,价格战变成白刃战,肯定日子不好过了。...
【手动创建UIWindow Objective-C语言】
一、上节课,我们讲了控制器View的懒加载: 1.什么时候会调用这个懒加载呢,用我们直接,控制器self.view self.view的时候: 什么时候,调用它这个self.view, 就要去加载控制器的view, self.view 加载控制器的view 我们给大家演示过了,这个大家已经清楚了,我们给大家说…...
【学习辅助】Axure手机时间管理APP原型,告别手机控番茄任务模板
作品概况 页面数量:共 30 页 兼容软件:Axure RP 9/10,不支持低版本 应用领域:时间管理、系统工具 作品申明:页面内容仅用于功能演示,无实际功能 作品特色 本品为「手机时间管理」APP原型,…...
[PyTorch][chapter 62][强化学习-基本概念]
前言: 目录: 强化学习概念 马尔科夫决策 Bellman 方程 格子世界例子 一 强化学习 强化学习 必须在尝试之后,才能发现哪些行为会导致奖励的最大化。 当前的行为可能不仅仅会影响即时奖赏,还有影响下一步奖赏和所有奖赏 强…...
使用 Stable Diffusion Img2Img 生成、放大、模糊和增强
在线工具推荐: Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 3D数字孪生场景编辑器 Stable Diffusion 2022.1 Img5Img 于 2 年发布,是一款革命性的深度学习模型,正在重新定义和推动照片级真实…...
【Git】第一篇:Git安装(centos)
git查看安装版本 以我自己的centos7.6为例,我们可以输入以下指令查看自己是否安装了git. git --version安装了的话就会显示自己安装的版本。 git 安装 安装很简单,一条命令即可 sudo yum install git -ygit 卸载 sudo yum remove git -y...
在uniapp中通过自定义事件使页面之间传递数据
在uniapp中,可以使用uni.$emit来在页面之间传递数据。uni.emit是一个事件触发器,可以在一个页面中触发一个自定义事件,并在其他页面中监听和处理这个事件。 // A页面 uni.$emit(dataChanged, { message: Hello from A page! });在接收数据的…...
【Windows Docker:安装nginx】
拉镜像 docker pull nginx运行初始镜像 docker run -d -p 80:80 --name nginx nginx拷贝文件 docker cp nginx:/etc/nginx/nginx.conf D:/dockerFile/nginx/nginx.conf docker cp nginx:/etc/nginx/conf.d D:/dockerFile/nginx/conf.d docker cp nginx:/usr/share/nginx/htm…...
ElasticSearch7.x - HTTP 操作 - 查询文档操作
查询索引下的所有文档 http://192.168.254.101:9200/shopping/_search 条件查询 请求路径上添加条件:http://192.168.254.101:9200/shopping/_search?q=category:小米 请求体上添加条件:http://192.168.254.101:9200/shopping/_search 请求体内容 {"query" :{&qu…...
基于opencv+tensorflow+神经网络的智能银行卡卡号识别系统——深度学习算法应用(含python、模型源码)+数据集(一)
目录 前言总体设计系统整体结构图系统流程图 运行环境Python环境TensorFlow 环境OpenCV环境 相关其它博客工程源代码下载其它资料下载 前言 本项目基于从网络获取的多种银行卡数据集,采用OpenCV库的函数进行图像处理,并通过神经网络进行模型训练。最终实…...
如何使用`open-uri`模块
首先,我们需要使用open-uri模块来打开网页,并使用Nokogiri模块来解析网页内容。然后,我们可以使用Nokogiri的css方法来选择我们想要的元素,例如标题,作者,内容等。最后,我们可以使用open-uri模块…...
activiti7审批驳回,控制变量无法覆盖,导致无限循环驳回,流程无法结束
项目开发过程中使用工作流,因此考虑使用activiti7做完工作流引擎。项目开发过程中,发现流程驳回时,再次执行流程,控制变量无法覆盖,导致无限循环驳回,流程无法结束。流程图如下图所示: 驳回控制…...
脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)
一、数据处理与分析实战 (一)实时滤波与参数调整 基础滤波操作 60Hz 工频滤波:勾选界面右侧 “60Hz” 复选框,可有效抑制电网干扰(适用于北美地区,欧洲用户可调整为 50Hz)。 平滑处理&…...
Java如何权衡是使用无序的数组还是有序的数组
在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...
JVM垃圾回收机制全解析
Java虚拟机(JVM)中的垃圾收集器(Garbage Collector,简称GC)是用于自动管理内存的机制。它负责识别和清除不再被程序使用的对象,从而释放内存空间,避免内存泄漏和内存溢出等问题。垃圾收集器在Ja…...
(二)原型模式
原型的功能是将一个已经存在的对象作为源目标,其余对象都是通过这个源目标创建。发挥复制的作用就是原型模式的核心思想。 一、源型模式的定义 原型模式是指第二次创建对象可以通过复制已经存在的原型对象来实现,忽略对象创建过程中的其它细节。 📌 核心特点: 避免重复初…...
Frozen-Flask :将 Flask 应用“冻结”为静态文件
Frozen-Flask 是一个用于将 Flask 应用“冻结”为静态文件的 Python 扩展。它的核心用途是:将一个 Flask Web 应用生成成纯静态 HTML 文件,从而可以部署到静态网站托管服务上,如 GitHub Pages、Netlify 或任何支持静态文件的网站服务器。 &am…...
IoT/HCIP实验-3/LiteOS操作系统内核实验(任务、内存、信号量、CMSIS..)
文章目录 概述HelloWorld 工程C/C配置编译器主配置Makefile脚本烧录器主配置运行结果程序调用栈 任务管理实验实验结果osal 系统适配层osal_task_create 其他实验实验源码内存管理实验互斥锁实验信号量实验 CMISIS接口实验还是得JlINKCMSIS 简介LiteOS->CMSIS任务间消息交互…...
06 Deep learning神经网络编程基础 激活函数 --吴恩达
深度学习激活函数详解 一、核心作用 引入非线性:使神经网络可学习复杂模式控制输出范围:如Sigmoid将输出限制在(0,1)梯度传递:影响反向传播的稳定性二、常见类型及数学表达 Sigmoid σ ( x ) = 1 1 +...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...
LangChain知识库管理后端接口:数据库操作详解—— 构建本地知识库系统的基础《二》
这段 Python 代码是一个完整的 知识库数据库操作模块,用于对本地知识库系统中的知识库进行增删改查(CRUD)操作。它基于 SQLAlchemy ORM 框架 和一个自定义的装饰器 with_session 实现数据库会话管理。 📘 一、整体功能概述 该模块…...
