当前位置: 首页 > news >正文

[PyTorch][chapter 62][强化学习-基本概念]

前言:

   目录: 

  1.    强化学习概念
  2.    马尔科夫决策
  3.    Bellman 方程
  4.     格子世界例子


一 强化学习

       强化学习 必须在尝试之后,才能发现哪些行为会导致奖励的最大化。
当前的行为可能不仅仅会影响即时奖赏,还有影响下一步奖赏和所有奖赏

强化学习五要素如下:

 1.2 强化学习流程

      

         1: 产生轨迹(trajectory)

         2: 策略评估(policy-evaluate)

         3: 策略提升(policy-improve)

     这里重点讲一下 产生轨迹:

      当前处于某个state 下面,

      按照策略选择 action =A_t= \pi(s_t)

     根据新的state 给出 reward:R_{t+1}=f(s_{t+1})

  最后产生了轨迹链


二 马尔科夫决策

  2.1 马尔科夫决策要求:

    1: 能够检测到理想的状态
    2: 可以多次尝试
    3: 系统的下个状态只与当前信息有关,与更早的状态无关。
决策过程中还可和当前采取的动作有关.

 

2.2  马尔科夫决策五要素

     S:  状态集合 states
     A:  动作集合 actions
     P: 状态转移概率 P_{S_t \to s_{t+1}}^a
     R: 奖励函数(reward function) ,agent 采取某个动作后的及时奖励
     r:  折扣系数意味当下的reward 比未来反馈更重要

          \sum_{t=0}^{\infty }r^t R(s_t)

         r \in (0,1]

2.3   主要流程

       1: Agent 处于状态s_0

       2: 按照策略 选择动作 a_0

       3:执行该动作后,有一定的概率转移到新的状态 p_{s_0\rightarrow s_1}^a

2.4  价值函数

       V(s)=E_{\pi}(\sum_{t=1}^{T} r_t|S_0=s)

       当前时刻处于状态s,未来获得期望的累积奖赏

        分为两种: state 价值函数  state-action 价值函数

        最优价值函数:

                   不同策略下, 累积奖赏最大的  v_{*}=max_{\pi}v_{\pi}(x)

  2.5 策略 policy

       当前状态s 下,按照策略,要采用的动作

        action=\pi(s)


三  Bellman 方程

  

   4.1  状态值函数为:

           V_{T}^{\pi}(x)=E_{\pi}[\frac{1}{T}\sum_{t=1}^Tr_t|x_0=x]: T 步累积奖赏

           V_{\gamma}^{T}(x)=E_{\pi}[\frac{1}{T}\sum_{t=0}^T \gamma^tr_{t+1}|x_0=x] :\gamma 折扣累积奖赏,\gamma \in (0,1]

   4.2 Bellman 方程

         V_{T}^{\pi}(x)==\sum_{a \in A}\pi (x,a) \sum_{x^{'} \in X} P_{x\rightarrow x^{'}}^a(\frac{1}{T} R_{x \rightarrow x^{'}}^a+\frac{T-1}{T}V_{T-1}^{\pi}(x^{'}))

         证明:

                V_{T}^{\pi}(x)=E_{\pi}[\frac{1}{T}\sum_{t=1}^T r_t|x_0=x]   

                            =E_{\pi}[\frac{1}{T}r_1+\frac{T-1}{T}\frac{1}{T-1}\sum_{t=2}^T r_t|x_0=x]

                           =\sum_{a \in A} \pi(x,a) \sum _{x^{'} \in X}P_{x\rightarrow x^{'}}^a (\frac{1}{T}R_{x\rightarrow x^{'}}^{a}+\frac{T-1}{T}E_{\pi}[\frac{1}{T-1}\sum_{t=1}^{T-1}r_t|x_0=x^{'}])

                          =\sum_{a \in A}\pi (x,a) \sum_{x^{'} \in X} P_{x\rightarrow x^{'}}^a(\frac{1}{T} R_{x \rightarrow x^{'}}^a+\frac{T-1}{T}V_{T-1}^{\pi}(x^{'}))     

         r折扣奖赏bellman 方程

               V_{\gamma}^{\pi}(x)=\sum_{a \in A}\sum_{x^{'} \in X} P_{x\rightarrow x^{'}}^a(R_{x\rightarrow x^{'}}^a+\gamma V_{r}^{\pi}(x'))


四  格子世界例子

     在某个格子,执行上下左右步骤,其中步骤最短的

为最优路径

5.1:gridword.py

   

import numpy as np#手动输入格子的大小
WORLD_SIZE = 4
START_POS = [0,0]
END_POS = [WORLD_SIZE-1, WORLD_SIZE-1]
prob = 1.0
#折扣因子
DISCOUNT = 0.9
# 动作集={上,下,左,右}
ACTIONS = [np.array([0, -1]),    #leftnp.array([-1, 0]),  # upnp.array([0, 1]),   # rightnp.array([1, 0])]   # downclass GridwordEnv():def action_name(self, action):if action ==0:name = "左"elif action ==1:name = "上"elif action ==2:name = "右"else:name = "上"return namedef __init__(self):self.nA = 4 #action:上下左右self.nS = 16 #state: 16个状态self.S = []for i in range(WORLD_SIZE):for j in range(WORLD_SIZE):state =[i,j]self.S.append(state)def step(self, s, a):action = ACTIONS[a]state = self.S[s]done = Falsereward = 0.0next_state = (np.array(state) + action).tolist()if (next_state == START_POS) or (state == START_POS):next_state =  START_POSdone = Trueelif (next_state == END_POS) or (state == START_POS):next_state =  END_POSdone = Trueelse:x, y = next_state# 判断是否出界if x < 0 or x >= WORLD_SIZE or y < 0 or y >= WORLD_SIZE:reward = -1.0next_state = stateelse:reward = -1.0return prob, next_state, reward,done

5.2 main.py 

# -*- coding: utf-8 -*-
"""
Created on Mon Nov 13 09:39:37 2023@author: chengxf2
"""import numpy as npdef init_state(WORLD_SIZE):S =[]for i in range(WORLD_SIZE):for j in range(WORLD_SIZE):state =[i,j]S.append(state) print(S)# -*- coding: utf-8 -*-
"""
Created on Fri Nov 10 16:48:16 2023@author: chengxf2
"""import numpy as np
import sys
from gym.envs.toy_text import discrete  #环境
from enum import Enum
from gridworld import GridwordEnvclass Agent():def __init__(self,env):self.discount_factor = 1.0 #折扣率self.theta = 1e-3 #最大偏差self.S = []self.env = env#当前处于的位置,V 累积奖赏def one_step_lookahead(self,s, v):R = np.zeros((env.nA)) #不同action的累积奖赏for action in range(env.nA):prob, next_state,reward, done = env.step(s, action) #只有一个next_state_index = self.env.S.index(next_state)#print("\n state",s ,"\t action ",action, "\t new_state ", next_state,"\t next_state_index ", next_state_index,"\t r: ",reward)r=  prob*(reward + self.discount_factor*v[next_state_index])R[action] +=r#print("\n state ",s, "\t",R)        return Rdef value_iteration(self, env, theta= 1e-3, discount_factor =1.0):v = np.zeros((env.nS)) #不同状态下面的累积奖赏,16个状态iterNum = 0while True:delta = 0.0for s in range(env.nS):R = self.one_step_lookahead(s,v)#在4个方向上面得到的累积奖赏best_action_value = np.max(R)#print("\n state ",s, "\t R ",R, "\t best_action_value ",best_action_value)bias = max(delta, np.abs(best_action_value-v[s]))v[s] =best_action_value#if (s+1)%4 == 0:#print("\n -----s ------------",s)iterNum +=1if bias<theta:breakprint("\n 迭代次数 ",iterNum)return vdef learn(self):policy = np.zeros((env.nS,env.nA))v = self.value_iteration(self.env, self.theta, self.discount_factor)for s in range(env.nS):R =  self.one_step_lookahead(s,v)best_action=  np.argmax(R)#print(s,best_action_value )policy[s,best_action] = 1.0return policy,vif __name__ == "__main__":env = GridwordEnv()agent =Agent(env)policy ,v = agent.learn()for s in range(env.nS):action = np.argmax(policy[s])act_name = env.action_name(action)print("\n state ",s, "\t action ",act_name, "\t 累积奖赏 ",v[s])

参考:

【强化学习玩游戏】1小时竟然就学会了强化学习dqn算法原理及实战(人工智能自动驾驶/深度强化学习/强化学习算法/强化学习入门/多智能体强化学习)_哔哩哔哩_bilibili

2-强化学习基本概念_哔哩哔哩_bilibili

3-马尔科夫决策过程_哔哩哔哩_bilibili

4-Bellman方程_哔哩哔哩_bilibili

5-值迭代求解_哔哩哔哩_bilibili

相关文章:

[PyTorch][chapter 62][强化学习-基本概念]

前言&#xff1a; 目录&#xff1a; 强化学习概念 马尔科夫决策 Bellman 方程 格子世界例子 一 强化学习 强化学习 必须在尝试之后&#xff0c;才能发现哪些行为会导致奖励的最大化。 当前的行为可能不仅仅会影响即时奖赏&#xff0c;还有影响下一步奖赏和所有奖赏 强…...

使用 Stable Diffusion Img2Img 生成、放大、模糊和增强

在线工具推荐&#xff1a; Three.js AI纹理开发包 - YOLO合成数据生成器 - GLTF/GLB在线编辑 - 3D模型格式在线转换 - 3D数字孪生场景编辑器 Stable Diffusion 2022.1 Img5Img 于 2 年发布&#xff0c;是一款革命性的深度学习模型&#xff0c;正在重新定义和推动照片级真实…...

【Git】第一篇:Git安装(centos)

git查看安装版本 以我自己的centos7.6为例&#xff0c;我们可以输入以下指令查看自己是否安装了git. git --version安装了的话就会显示自己安装的版本。 git 安装 安装很简单&#xff0c;一条命令即可 sudo yum install git -ygit 卸载 sudo yum remove git -y...

在uniapp中通过自定义事件使页面之间传递数据

在uniapp中&#xff0c;可以使用uni.$emit来在页面之间传递数据。uni.emit是一个事件触发器&#xff0c;可以在一个页面中触发一个自定义事件&#xff0c;并在其他页面中监听和处理这个事件。 // A页面 uni.$emit(dataChanged, { message: Hello from A page! });在接收数据的…...

【Windows Docker:安装nginx】

拉镜像 docker pull nginx运行初始镜像 docker run -d -p 80:80 --name nginx nginx拷贝文件 docker cp nginx:/etc/nginx/nginx.conf D:/dockerFile/nginx/nginx.conf docker cp nginx:/etc/nginx/conf.d D:/dockerFile/nginx/conf.d docker cp nginx:/usr/share/nginx/htm…...

ElasticSearch7.x - HTTP 操作 - 查询文档操作

查询索引下的所有文档 http://192.168.254.101:9200/shopping/_search 条件查询 请求路径上添加条件:http://192.168.254.101:9200/shopping/_search?q=category:小米 请求体上添加条件:http://192.168.254.101:9200/shopping/_search 请求体内容 {"query" :{&qu…...

基于opencv+tensorflow+神经网络的智能银行卡卡号识别系统——深度学习算法应用(含python、模型源码)+数据集(一)

目录 前言总体设计系统整体结构图系统流程图 运行环境Python环境TensorFlow 环境OpenCV环境 相关其它博客工程源代码下载其它资料下载 前言 本项目基于从网络获取的多种银行卡数据集&#xff0c;采用OpenCV库的函数进行图像处理&#xff0c;并通过神经网络进行模型训练。最终实…...

如何使用`open-uri`模块

首先&#xff0c;我们需要使用open-uri模块来打开网页&#xff0c;并使用Nokogiri模块来解析网页内容。然后&#xff0c;我们可以使用Nokogiri的css方法来选择我们想要的元素&#xff0c;例如标题&#xff0c;作者&#xff0c;内容等。最后&#xff0c;我们可以使用open-uri模块…...

activiti7审批驳回,控制变量无法覆盖,导致无限循环驳回,流程无法结束

项目开发过程中使用工作流&#xff0c;因此考虑使用activiti7做完工作流引擎。项目开发过程中&#xff0c;发现流程驳回时&#xff0c;再次执行流程&#xff0c;控制变量无法覆盖&#xff0c;导致无限循环驳回&#xff0c;流程无法结束。流程图如下图所示&#xff1a; 驳回控制…...

世界互联网大会|云轴科技ZStack受邀分享云原生超融合

11月8日至10日“世界互联网大会乌镇峰会”在浙江嘉兴的乌镇开幕&#xff0c;大会的主题为“建设包容、普惠、有韧性的数字世界——携手构建网络空间命运共同体”&#xff0c;全球各界代表就热点焦点问题展开讨论&#xff0c;反映产业各界对互联网发展的前瞻思考&#xff0c;引领…...

k8s ingress基础

一、ingress 简介 在k8s集群中&#xff0c;service和pod的ip为内网ip&#xff0c;仅集群内部才可以访问。如果外部应用想要直接访问集群内的服务&#xff0c;就需要把外部请求通过负载均衡转发到service上&#xff0c;然后再由kube-proxy组件将其转发给后端pod。一般service可…...

【网络奇缘】我和英特网再续前缘

&#x1f308;个人主页: Aileen_0v0&#x1f525;系列专栏: 一见倾心,再见倾城 --- 计算机网络~&#x1f4ab;个人格言:"没有罗马,那就自己创造罗马~" 目录 计算机网络的概念 计算机网络的功能 ⭐1.数据通信 ⭐2.资源共享 ⭐3.分布式处理 ⭐4.提高可靠性 ⭐…...

node插件MongoDB(四)—— 库mongoose 的条件控制(三)

文章目录 前言一、运算符二、逻辑运算1. $or 逻辑或2. $and 逻辑与 三、正则匹配 前言 在mongodb 不能使用 > < > < ! 等运算符&#xff0c;需要使用替代符号。 一、运算符 > 使用 $gt< 使用 $lt> 使用 $gte< 使用 $lte! 使用 $ne 例子&#xff1a;获…...

【Amazon】云上探索实验室—了解 AI 编程助手 Amazon Codewhisperer

文章目录 一、前言&#x1f4e2;二、关于云上探索实验室&#x1f579;️三、领学员需要做什么&#xff1f;✴️四、领学员能获得什么&#xff1f;&#x1f523;五、学课通道入口&#x1f447;1️⃣CSDN平台2️⃣网易云课堂3️⃣Skill Builder 平台 六、活动详情链接 一、前言&a…...

【安卓13】谷歌原生桌面launcher3 禁止桌面图标拖拽和所有应用拖拽

前言 如果我们需要固定住布局&#xff0c;不给用户拖拽&#xff0c;可以通过修改长按点击监听事件来达到禁止拖拽的目的二、代码追踪 1、src/com/android/launcher3/touch/ItemLongClickListener.java 在这个类开头注册了两种类型的监听&#xff0c;一个是在桌面拖拽应用&…...

SA实战 ·《SpringCloud Alibaba实战》第13章-服务网关:项目整合SpringCloud Gateway网关

大家好,我是冰河~~ 一不小心[SpringCloud Alibaba实战》专栏都更新到第13章了,再不上车就跟不上了,小伙伴们快跟上啊! 在《SpringCloud Alibaba实战》专栏前面的文章中,我们实现了用户微服务、商品微服务和订单微服务之间的远程调用,并且实现了服务调用的负载均衡。也基于…...

海外ASO优化之谷歌商店的评论优化

应用商店中的评分和评论&#xff0c;显示我们的应用程序的受欢迎程度以及用户对该应用程序的看法。评分和评论是以前或者是现在的用户分享的经验和公开的反馈。 1、提高应用评分评论。 高评分的应用可以从应用商店内的搜索流量中获得更多的点击量&#xff0c;通过推荐和推荐获…...

IP-guard Webserver view 远程命令执行漏洞【2023最新漏洞】

IP-guard Webserver view 远程命令执行漏洞【2023最新漏洞】 一、漏洞描述二、漏洞影响三、漏洞危害四、FOFA语句五、漏洞复现1、手动复现yaml pocburp发包 2、自动化复现小龙POC检测工具下载地址 免责声明&#xff1a;请勿利用文章内的相关技术从事非法测试&#xff0c;由于传…...

专访|OpenTiny 社区 Mr 栋:结合兴趣,明确定位,在开源中给自己一些技术性挑战

前言 OpenTiny 开源之夏项目终于迎来了圆满的结局。借此机会&#xff0c;我们采访了 TinyReact 的共建者 Mr 栋同学。 Mr 栋同学是一位热衷于前端技术的开发者&#xff0c;对前端开发充满了激情和热爱。同时他也是一位即将毕业的大四在校生。在 OpenTiny 开源项目中&#xff0…...

2023年11月PHP测试覆盖率解决方案

【题记&#xff1a;最近进行了ExcelBDD PHP版的开发&#xff0c;查阅了大量资料&#xff0c;发现PHP测试覆盖率解决方案存在不同的历史版本&#xff0c;让我花费了蛮多时间&#xff0c;为了避免后人浪费时间&#xff0c;整理本文&#xff0c;而且网上没有给出Azure DevOps里面P…...

【杂谈】-递归进化:人工智能的自我改进与监管挑战

递归进化&#xff1a;人工智能的自我改进与监管挑战 文章目录 递归进化&#xff1a;人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管&#xff1f;3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...

简易版抽奖活动的设计技术方案

1.前言 本技术方案旨在设计一套完整且可靠的抽奖活动逻辑,确保抽奖活动能够公平、公正、公开地进行,同时满足高并发访问、数据安全存储与高效处理等需求,为用户提供流畅的抽奖体验,助力业务顺利开展。本方案将涵盖抽奖活动的整体架构设计、核心流程逻辑、关键功能实现以及…...

线程同步:确保多线程程序的安全与高效!

全文目录&#xff1a; 开篇语前序前言第一部分&#xff1a;线程同步的概念与问题1.1 线程同步的概念1.2 线程同步的问题1.3 线程同步的解决方案 第二部分&#xff1a;synchronized关键字的使用2.1 使用 synchronized修饰方法2.2 使用 synchronized修饰代码块 第三部分&#xff…...

2.Vue编写一个app

1.src中重要的组成 1.1main.ts // 引入createApp用于创建应用 import { createApp } from "vue"; // 引用App根组件 import App from ./App.vue;createApp(App).mount(#app)1.2 App.vue 其中要写三种标签 <template> <!--html--> </template>…...

sqlserver 根据指定字符 解析拼接字符串

DECLARE LotNo NVARCHAR(50)A,B,C DECLARE xml XML ( SELECT <x> REPLACE(LotNo, ,, </x><x>) </x> ) DECLARE ErrorCode NVARCHAR(50) -- 提取 XML 中的值 SELECT value x.value(., VARCHAR(MAX))…...

【服务器压力测试】本地PC电脑作为服务器运行时出现卡顿和资源紧张(Windows/Linux)

要让本地PC电脑作为服务器运行时出现卡顿和资源紧张的情况&#xff0c;可以通过以下几种方式模拟或触发&#xff1a; 1. 增加CPU负载 运行大量计算密集型任务&#xff0c;例如&#xff1a; 使用多线程循环执行复杂计算&#xff08;如数学运算、加密解密等&#xff09;。运行图…...

select、poll、epoll 与 Reactor 模式

在高并发网络编程领域&#xff0c;高效处理大量连接和 I/O 事件是系统性能的关键。select、poll、epoll 作为 I/O 多路复用技术的代表&#xff0c;以及基于它们实现的 Reactor 模式&#xff0c;为开发者提供了强大的工具。本文将深入探讨这些技术的底层原理、优缺点。​ 一、I…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

嵌入式学习笔记DAY33(网络编程——TCP)

一、网络架构 C/S &#xff08;client/server 客户端/服务器&#xff09;&#xff1a;由客户端和服务器端两个部分组成。客户端通常是用户使用的应用程序&#xff0c;负责提供用户界面和交互逻辑 &#xff0c;接收用户输入&#xff0c;向服务器发送请求&#xff0c;并展示服务…...

GitHub 趋势日报 (2025年06月06日)

&#x1f4ca; 由 TrendForge 系统生成 | &#x1f310; https://trendforge.devlive.org/ &#x1f310; 本日报中的项目描述已自动翻译为中文 &#x1f4c8; 今日获星趋势图 今日获星趋势图 590 cognee 551 onlook 399 project-based-learning 348 build-your-own-x 320 ne…...