当前位置: 首页 > news >正文

[量化投资-学习笔记015]Python+TDengine从零开始搭建量化分析平台-量化知识点汇总

之前的章节介绍了多个技术分析指标,以下进行一个简单的总结。
看过之前章节的同学就可以不用打开了。

技术指标

    • MA
    • EMA
    • MACD
    • CCI
    • ATR
    • KDJ

MA

最基础的技术指标,对一段周期内的收盘价进行简单平均,是一切指标的基础。

def calc_ma(period,ma):ma_n = []period = period-1for i in range(len(ma)):if i >= period:ma_n.append(np.mean(ma[i-period:i+1]))else:if i == 0:ma_n.append(ma[i])else:ma_n.append(np.mean(ma[:i]))return ma_n

EMA

均线的进阶版本,对一段周期收盘价进行移动平均,获取更平衡的曲线。
周期越长,曲线越平滑;周期越短,曲线越陡峭。

def calc_ema(df,period):df['EMA_' + str(period)] = pd.DataFrame.ewm(df['close'],span=period).mean() return df

MACD

指数平滑移动平均线。MACD 是通过计算不同时间的 EMA 的差值俩判断价格趋势。

MACD 包括 3 个值:
长短期 EMA 差值:DIF = EMA(close,12)-EMA(close,26) (计算 12 日和 26 日 EMA 均线差值)
信号线: DEA = EMA(DIF,9) (计算差值的 EMA 均线)
柱状图: OSC = DIF - DEA

def calculate_macd(df, short_period, long_period, signal_period):df['DIF'] = pd.DataFrame.ewm(df['close'],span=short_period).mean() - pd.DataFrame.ewm(df['close'],span=long_period).mean()df['DEA'] = pd.DataFrame.ewm(df['DIF'],span=singal_period).mean()df['OSC'] = df['DIF'] - df['DEA']return df

CCI

CCI 旨在更全面地分析一定时间段内的综合价格走势。与其他震荡指标不同,CCI 不仅以收盘价为参考,还使用了最高价、最低价和收盘价的平均值作为计算基础。

计算公式:

  1. 计算典型价格(TP):TP =(最高价 + 最低价 + 收盘价)/ 3
  2. 计算典型价格移动平均线(TPSMA):TPSMA = (TP1 + TP2 + TP3 + … + TPn) / n
  3. 计算均值偏差(Mean Deviation):MD = ( |TP1 - TPSMA1| +…+ |TPn - TPSMAn| ) / n
  4. 计算CCI指数:CCI = ( TPt - TPSMAt )/ ( 0.015 X MDt ),其中t代表当前K线上的数据,0.015用于将70%到80%的CCI数据归纳在100和-100之间.
def calc_cci(df,period):tp = (df['high'] + df['low'] + df['close']) / 3ma = tp.rolling(window=period).mean()md = tp.rolling(window=period).std()df['CCI'] = (tp - ma) / (0.015 * md)return df

ATR

ATR指标(Average True Range / ATR)是一种用于反应价格波动的指标。

ATR指标的计算方法:

  1. 计算波动幅度TR(True Range):max(当天最高价和最低价之间的距离,前一天收盘价和当天最高价之间的距离,前一天收盘价和当天最低价之间的距离)。
  2. 取一定时间周期内(通常默认为14个交易日)TR的平均值,即可得到平均真实波动幅度ATR。

ATR的波动幅度概念可以显示出交易者的期望和市场交易的活跃程度。波动率越高,ATR值越高;反之,波动率越低,ATR值也越低。

def calc_atr(df,period):df['high - low'] = df['close'].diff().abs()df['high - close_pre'] = (df['high'] - df['close'].shift()).abs()df['low - close_pre'] = (df['low'] - df['close'].shift()).abs()df['TR'] = df[['high - low', 'high - close_pre', 'low - close_pre']].max(axis=1)df['ATR'] = df['TR'].rolling(window=period).mean()return df

KDJ

KDJ的计算依据是最高价、最低价和收盘价。K、D、J 是图中的三条线。

要计算 KDJ,需要先计算价差 RSV,RSV=((收盘价-最低价)/(最高价-收盘价))*100

  • K = RSV 的指数移动平均值(平滑因子=1/3)
  • D = K 的指数移动平均值(平衡因子=1/3)
  • J = K3 - D2
def calc_kdj(df,period):m = 3df['lowest'] = df['low'].rolling(window=period).min()df['highest'] = df['high'].rolling(window=period).max()df['RSV'] = (df['close'] - df['lowest']) / (df['highest'] - df['lowest']) * 100df['K'] = df['RSV'].ewm(adjust=False, alpha=1/m).mean()df['D'] = df['K'].ewm(adjust=False, alpha=1/m).mean()df['J'] = 3 * df['K'] - 2 * df['D']return df

相关文章:

[量化投资-学习笔记015]Python+TDengine从零开始搭建量化分析平台-量化知识点汇总

之前的章节介绍了多个技术分析指标,以下进行一个简单的总结。 看过之前章节的同学就可以不用打开了。 技术指标 MAEMAMACDCCIATRKDJ MA 最基础的技术指标,对一段周期内的收盘价进行简单平均,是一切指标的基础。 def calc_ma(period,ma):ma_…...

VSCode 好用的插件分享

文章目录 Introlistcode runner 【在文本编辑器中编辑好各类语言的源代码,然后一键运行】gitlens - 【git提交信息即时查看,类似IDEA中的 show annotation】还有更多,会日常补充。 Intro 大四毕业前,我只有一台dell latitude 455…...

C++虚基类详解

多继承(Multiple Inheritance) 是指从多个直接基类中产生派生类的能力,多继承的派生类继承了所有父类的成员。尽管概念上非常简单,但是多个基类的相互交织可能会带来错综复杂的设计问题,命名冲突就是不可回避的一个。…...

Mac M2/M3 芯片环境配置以及常用软件安装-前端

最近换了台新 Mac,所有的配置和软件就重新安装下,顺便写个文章。 一、环境配置 1. 安装 Homebrew 安装 Homebrew【Mac 安装 Homebrew】 通过国内镜像安装会比较快 /bin/zsh -c "$(curl -fsSL https://gitee.com/cunkai/HomebrewCN/raw/master/Ho…...

Karmada更高效地实现故障转移

随着云原生技术的发展,其应用场景不断扩大。越来越多的企业开始将应用程序部署在 Kubernetes 集群中,随着 Kubernetes 集群规模的不断扩大,也带来了许多管理挑战,例如多集群间负载均衡、资源调度、故障转移等问题。为了解决这些问…...

前端AJAX入门到实战,学习前端框架前必会的(ajax+node.js+webpack+git)(四)

你可以的&#xff0c;去飞吧&#xff01; 同步代码和异步代码 回调函数地狱和 Promise 链式调用 回调函数地狱 缔造“回调地狱”↓ 制造里层回调错误&#xff0c;却在最外层接收错误→无法捕获 axios源码抛出异常&#xff08;未捕获&#xff09; <!DOCTYPE html> <ht…...

​TechSmith Camtasia 2024破解版功能介绍及使用教程

在现在的网络互联网时代&#xff0c;越来越多的人走上了自媒体的道路。有些自媒体人会自己在网络上录制精彩视频&#xff0c;也有一些人会将精彩、热门的电影剪辑出来再加上自己给它的配音&#xff0c;做成大家喜欢看的电影剪辑片段。相信不管大家是自己平时有独特的爱好也好、…...

【无线网络技术】——无线传输技术基础(学习笔记)

目录 &#x1f552; 1. 无线传输媒体&#x1f558; 1.1 地面微波&#x1f558; 1.2 卫星微波&#x1f558; 1.3 广播无线电波&#x1f558; 1.4 红外线&#x1f558; 1.5 光波 &#x1f552; 2. 天线&#x1f558; 2.1 辐射模式&#x1f558; 2.2 天线类型&#x1f564; 2.2.1 …...

【Liunx】部署WEB服务:Apache

【Liunx】部署WEB服务:Apache 概述Apache1.介绍2.Apache文件路径3.Apache详解(1)安装Apache(2)启动Apache(3)配置文件a.Apache主配置文件&#xff1a;vim /etc/httpd/conf/httpd.conf信息&#xff1a;b.基于主机头的虚拟主机 (4)开始演示&#xff1a;a.新建两个网站根目录b.分别…...

数字媒体技术基础之:常见图片文件格式

在数字图像处理和图形设计领域&#xff0c;了解不同的图片文件格式及其特点是至关重要的。每种格式都有其独特的用途和优势。以下介绍一些最常见的图片文件格式。 JPEG Joint Photographic Experts Group 扩展名&#xff1a;.jpg 或 .jpeg 特点&#xff1a; 1、有损压缩&#x…...

2023-2024-2 高级语言程序设计-二维数组

7-1 矩阵运算 给定一个nn的方阵&#xff0c;本题要求计算该矩阵除副对角线、最后一列和最后一行以外的所有元素之和。副对角线为从矩阵的右上角至左下角的连线。 输入格式: 输入第一行给出正整数n&#xff08;1<n≤10&#xff09;&#xff1b;随后n行&#xff0c;每行给出…...

【uniapp】确认弹出框,选择确定和取消

代码如下&#xff1a; <view style"display: flex; justify-content: space-around;"><button class"button" click"submit">t提交</button> </view>submit(){let thatthisuni.showModal({title: 提示&#xff1a;,con…...

阿里云容器镜像服务的运维总结

一、背景 容器镜像服务&#xff0c;作为一个可选付费产品&#xff0c;主要作用是存储docker的镜像仓库&#xff0c;供k8s拉取到Pod节点里。 你可以自己搭建一个harbor镜像仓库&#xff0c;在公司的开发环境下&#xff0c;将image推送到仓库&#xff1b;然后在生产k8s从仓库拉取…...

修炼k8s+flink+hdfs+dlink(七:flinkcdc)

一 &#xff1a;flinkcdc官网链接。 https://ververica.github.io/flink-cdc-connectors/release-2.1/content/about.html 二&#xff1a;在flink中添加jar包。 在flink lib目录下增加你所需要的包。 https://kdocs.cn/join/gv467qi?f101 邀请你加入共享群「工作使用重要工具…...

排查问题流程

1、问题定义和描述&#xff1a; 确定问题的性质、表现和影响。 收集和整理相关的问题描述和报告。 2、问题复现&#xff1a; 尝试在适当的环境中重现问题。 确定问题发生的条件、步骤和触发器。 3、问题分析&#xff1a; 收集和分析相关的日志、错误消息或警报。 使用适当的工…...

【nlp】2.2 传统RNN模型

传统RNN模型 1 传统RNN模型1.1 RNN结构分析1.2 使用Pytorch构建RNN模型1.3 传统RNN优缺点1 传统RNN模型 1.1 RNN结构分析 结构解释图: 内部结构分析: 我们把目光集中在中间的方块部分, 它的输入有两部分, 分别是h(t-1)以及x(t), 代表上一时间步的隐层输出, 以及此时间步的…...

C/C++---------------LeetCode第49.字母异位词分组

字母异位词分组 题目及要求哈希算法在主函数内使用 题目及要求 给你一个字符串数组&#xff0c;请你将 字母异位词 组合在一起。可以按任意顺序返回结果列表。 字母异位词 是由重新排列源单词的所有字母得到的一个新单词。 示例 1: 输入: strs [“eat”, “tea”, “tan”…...

spark调优案例分享

做了一个Spark调优案例的分享 最近在整理了Spark相关的调优案例&#xff0c;并做了以下分享:spark调优案例 &#xff0c;注意是Mac Keynote...

阿里达摩院开源DAMO-YOLO

1.简介 DAMO-YOLO是一个兼顾速度与精度的目标检测框架&#xff0c;其效果超越了目前的一众YOLO系列方法&#xff0c;在实现SOTA的同时&#xff0c;保持了很高的推理速度。DAMO-YOLO是在YOLO框架基础上引入了一系列新技术&#xff0c;对整个检测框架进行了大幅的修改。具体包括…...

【异常检测小集】

目录 【2018 ICLR】DAGMM&#xff1a;Deep Autoencoding Gaussian Mixture Model for Unsupervised Anomaly Detection【2021 TNNLS】无名&#xff1a;Feature Encoding with AutoEncoders for Weakly-supervised Anomaly Detection 【2018 ICLR】DAGMM&#xff1a;Deep Autoen…...

Vim 调用外部命令学习笔记

Vim 外部命令集成完全指南 文章目录 Vim 外部命令集成完全指南核心概念理解命令语法解析语法对比 常用外部命令详解文本排序与去重文本筛选与搜索高级 grep 搜索技巧文本替换与编辑字符处理高级文本处理编程语言处理其他实用命令 范围操作示例指定行范围处理复合命令示例 实用技…...

设计模式和设计原则回顾

设计模式和设计原则回顾 23种设计模式是设计原则的完美体现,设计原则设计原则是设计模式的理论基石, 设计模式 在经典的设计模式分类中(如《设计模式:可复用面向对象软件的基础》一书中),总共有23种设计模式,分为三大类: 一、创建型模式(5种) 1. 单例模式(Sing…...

Mybatis逆向工程,动态创建实体类、条件扩展类、Mapper接口、Mapper.xml映射文件

今天呢&#xff0c;博主的学习进度也是步入了Java Mybatis 框架&#xff0c;目前正在逐步杨帆旗航。 那么接下来就给大家出一期有关 Mybatis 逆向工程的教学&#xff0c;希望能对大家有所帮助&#xff0c;也特别欢迎大家指点不足之处&#xff0c;小生很乐意接受正确的建议&…...

使用分级同态加密防御梯度泄漏

抽象 联邦学习 &#xff08;FL&#xff09; 支持跨分布式客户端进行协作模型训练&#xff0c;而无需共享原始数据&#xff0c;这使其成为在互联和自动驾驶汽车 &#xff08;CAV&#xff09; 等领域保护隐私的机器学习的一种很有前途的方法。然而&#xff0c;最近的研究表明&…...

渗透实战PortSwigger靶场-XSS Lab 14:大多数标签和属性被阻止

<script>标签被拦截 我们需要把全部可用的 tag 和 event 进行暴力破解 XSS cheat sheet&#xff1a; https://portswigger.net/web-security/cross-site-scripting/cheat-sheet 通过爆破发现body可以用 再把全部 events 放进去爆破 这些 event 全部可用 <body onres…...

渲染学进阶内容——模型

最近在写模组的时候发现渲染器里面离不开模型的定义,在渲染的第二篇文章中简单的讲解了一下关于模型部分的内容,其实不管是方块还是方块实体,都离不开模型的内容 🧱 一、CubeListBuilder 功能解析 CubeListBuilder 是 Minecraft Java 版模型系统的核心构建器,用于动态创…...

Nginx server_name 配置说明

Nginx 是一个高性能的反向代理和负载均衡服务器&#xff0c;其核心配置之一是 server 块中的 server_name 指令。server_name 决定了 Nginx 如何根据客户端请求的 Host 头匹配对应的虚拟主机&#xff08;Virtual Host&#xff09;。 1. 简介 Nginx 使用 server_name 指令来确定…...

AspectJ 在 Android 中的完整使用指南

一、环境配置&#xff08;Gradle 7.0 适配&#xff09; 1. 项目级 build.gradle // 注意&#xff1a;沪江插件已停更&#xff0c;推荐官方兼容方案 buildscript {dependencies {classpath org.aspectj:aspectjtools:1.9.9.1 // AspectJ 工具} } 2. 模块级 build.gradle plu…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...

Linux nano命令的基本使用

参考资料 GNU nanoを使いこなすnano基础 目录 一. 简介二. 文件打开2.1 普通方式打开文件2.2 只读方式打开文件 三. 文件查看3.1 打开文件时&#xff0c;显示行号3.2 翻页查看 四. 文件编辑4.1 Ctrl K 复制 和 Ctrl U 粘贴4.2 Alt/Esc U 撤回 五. 文件保存与退出5.1 Ctrl …...