机器学习基础之《回归与聚类算法(6)—模型保存与加载》
一、背景
现在我们预测每次都要重新运行一遍模型。完整的流程应该是不断调整阈值重复计算。
当训练或者计算好一个模型之后,那么如果别人需要我们提供结果预测,就需要保存模型(主要是保存算法的参数)。
二、sklearn模型的保存和加载API
1、import joblib
保存:joblib.dump(rf, "test.pkl")
rf:是预估器estimator
test.pkl:是保存的名字
将预估器序列化保存在本地
加载:estimator = joblib.load("test.pkl")
2、代码
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.linear_model import LinearRegression, SGDRegressor, Ridge
from sklearn.metrics import mean_squared_error
import joblibdef linear1():"""正规方程的优化方法对波士顿房价进行预测"""# 1、获取数据boston = load_boston()# 2、划分数据集x_train,x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=10)# 3、标准化transfer = StandardScaler()x_train = transfer.fit_transform(x_train)x_test = transfer.transform(x_test)# 4、预估器estimator = LinearRegression()estimator.fit(x_train, y_train)# 5、得出模型print("正规方程-权重系数为:\n", estimator.coef_)print("正规方程-偏置为:\n", estimator.intercept_)# 6、模型评估y_predict = estimator.predict(x_test)print("预测房价:\n", y_predict)error = mean_squared_error(y_test, y_predict)print("正规方程-均方误差为:\n", error)return Nonedef linear2():"""梯度下降的优化方法对波士顿房价进行预测"""# 1、获取数据boston = load_boston()# 2、划分数据集x_train,x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=10)# 3、标准化transfer = StandardScaler()x_train = transfer.fit_transform(x_train)x_test = transfer.transform(x_test)# 4、预估器estimator = SGDRegressor()estimator.fit(x_train, y_train)# 5、得出模型print("梯度下降-权重系数为:\n", estimator.coef_)print("梯度下降-偏置为:\n", estimator.intercept_)# 6、模型评估y_predict = estimator.predict(x_test)print("预测房价:\n", y_predict)error = mean_squared_error(y_test, y_predict)print("梯度下降-均方误差为:\n", error)return Nonedef linear3():"""岭回归对波士顿房价进行预测"""# 1、获取数据boston = load_boston()# 2、划分数据集x_train,x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=10)# 3、标准化transfer = StandardScaler()x_train = transfer.fit_transform(x_train)x_test = transfer.transform(x_test)# 4、预估器estimator = Ridge()estimator.fit(x_train, y_train)# 保存模型joblib.dump(estimator, "my_ridge.pkl")# 5、得出模型print("岭回归-权重系数为:\n", estimator.coef_)print("岭回归-偏置为:\n", estimator.intercept_)# 6、模型评估y_predict = estimator.predict(x_test)print("预测房价:\n", y_predict)error = mean_squared_error(y_test, y_predict)print("岭回归-均方误差为:\n", error)return Nonedef linear4():"""岭回归对波士顿房价进行预测"""# 1、获取数据boston = load_boston()# 2、划分数据集x_train,x_test, y_train, y_test = train_test_split(boston.data, boston.target, random_state=10)# 3、标准化transfer = StandardScaler()x_train = transfer.fit_transform(x_train)x_test = transfer.transform(x_test)# 加载模型estimator = joblib.load("my_ridge.pkl")# 5、得出模型print("岭回归-权重系数为:\n", estimator.coef_)print("岭回归-偏置为:\n", estimator.intercept_)# 6、模型评估y_predict = estimator.predict(x_test)print("预测房价:\n", y_predict)error = mean_squared_error(y_test, y_predict)print("岭回归-均方误差为:\n", error)return Noneif __name__ == "__main__":# 代码1:正规方程的优化方法对波士顿房价进行预测linear1()# 代码2:梯度下降的优化方法对波士顿房价进行预测linear2()# 代码3:岭回归对波士顿房价进行预测linear3()# 代码4:加载模型linear4()
相关文章:
机器学习基础之《回归与聚类算法(6)—模型保存与加载》
一、背景 现在我们预测每次都要重新运行一遍模型。完整的流程应该是不断调整阈值重复计算。 当训练或者计算好一个模型之后,那么如果别人需要我们提供结果预测,就需要保存模型(主要是保存算法的参数)。 二、sklearn模型的保存和…...

修改Openwrt软路由的web端口
如何修改openwrt路由器的web访问端口号? 在OpenWrt路由器上,如何修改Web访问端口号,通常涉及到修改HTTP服务器的配置文件。默认情况下,OpenWrt使用的HTTP服务器是uHTTPd。 以下是修改Web访问端口号的步骤: 一、通过…...

编程怎么学习视频教程,编程实例入门教程,中文编程开发语言工具下载
编程怎么学习视频教程,编程实例入门教程,中文编程开发语言工具下载。 给大家分享一款中文编程工具,零基础轻松学编程,不需英语基础,编程工具可下载。 这款工具不但可以连接部分硬件,而且可以开发大型的软件…...

得帆信息携手深信服,联合打造高安全PaaS超融合一体化解决方案
上海得帆信息技术有限公司(以下简称“得帆”)和深信服科技股份有限公司(以下简称“深信服”)携手推出融合安全性、稳定性、高效性于一体的全新PaaS超融合解决方案。 用户痛点分析 全面推进企业数字化与信息化的趋势下,…...

arcgis--浮点型栅格数据转整型
利用【Spatial Analyst工具】-【数学】-【转为整型】工具,将浮点型数据转为整型。如下: 【转为整型】对话框参数设计如下: 转换结果如下:...

nginx四层tcp负载均衡及主备、四层udp负载均衡及主备、7层http负载均衡及主备配置(wndows系统主备、负载均衡)
准备工作 服务器上安装、配置网络负载平衡管理器 windows服务器热备、负载均衡配置-CSDN博客 在windows服务器上安装vmware17 win10 上安装vmware17-CSDN博客 在windows上利用vmware17 搭建centos7 mini版 在windows上利用vmware17 搭建centos7 mini版本服务器-CSDN博客 …...
Electron 控制屏幕亮度
CMD控制屏幕亮度 一开始用brightness,dev下可用,打包后执行报错,找了很多文章都没办法解决。后来想到执行CMD命令去设置( 如何在 Windows 中使用命令行调整屏幕亮度 )。测试打包后正常,无需管理员权限。 引入exec const { exec }…...

TSINGSEE视频汇聚管理与AI算法视频质量检测方案
一、建设背景 随着互联网视频技术的发展,视频监管在辅助安全生产、管理等方面发挥了不可替代的作用。但是,在监管场景中,仍然存在视频掉线、视频人为遮挡、视频录像存储时长不足等问题,对企业的日常管理和运转存在较大的安全隐患…...
linux系统中文件系统和挂载点的联系和区别?
在 Linux 系统中,文件系统(File System)和挂载点(Mount Point)是密切相关的概念,它们之间有如下联系和区别: 文件系统:文件系统是操作系统用于组织和管理数据的一种结构。它定义了文…...

CTFSHOW 文件上传
web151 JS前端绕过 直接上传 png的图片马 然后抓包修改为php asystem("ls /var/www/html"); asystem("cat /var/www/html/flag.php"); web152 和151一样的方法也可以实现上传 asystem("ls /var/www/html"); asystem("cat /var/www/html…...
自组织竞争网络在模式分类中的应用——患者癌症发病预测
大家好,我是带我去滑雪! 自组织神经网络可以通过对客观事件的反复观察、分析与比较,自行提示内在规律,并对具有共同特征的事物进行正确的分类。该网络更与人脑中生物神经网络的学习模式类似,即可以通过自动寻找样本中的…...

神经网络中的量化与蒸馏
本文将深入研究深度学习中精简模型的技术:量化和蒸馏 深度学习模型,特别是那些具有大量参数的模型,在资源受限环境中的部署几乎是不可能的。所以就出现了两种流行的技术,量化和蒸馏,它们都是可以使模型更加轻量级&…...
数据库——表结构相关SQL
一、GP或PostgreSQL 1.获取表结构 SELECT a.schemaname schema_name, a.tablename table_name, string_agg(b.column_name, ,) AS columns FROM (SELECT schemaname, tablename FROM pg_tables WHERE schemaname public and tablename like test%) a LEFT JOIN (SELECT tabl…...

python 爬虫之requests 库以及相关函数的详细介绍
get 函数 当你使用 requests.get 函数时,你可以按照以下步骤来发起一个 GET 请求: 导入 requests 模块: 在你的 Python 脚本或程序中,首先导入 requests 模块。 import requests指定目标 URL: 设置你要请求的目标 URL…...

突破职场竞争,引领未来发展:考取《研发效能(DevOps)工程师职业技术认证》
就业形势堪忧,什么最有保障?考个“国家级”证书傍身吧! 工信部教考中心作为中国领先的行业技能认证机构,其颁发的认证证书不仅代表了个人在信息技术领域的专业能力,更可以录入工业和信息化技术技能人才数据库…...
设计模式例子
策略模式(Strategy Pattern) 策略模式 (Strategy Pattern): 定义一系列算法,将每个算法都封装起来,并使它们之间可以互换。例如:java.util.Comparator 以下是一个简单的Java策略模式的例子,涉及一个商品的…...
腾讯云入侵
早上8点左右收到腾讯云的相关短信,提示机器可能存在挖坑风险。马上登录机器看了一下,发现crontab有个比较诡异的任务 [devVM_0_12_centos ~]$ crontab -l 11 * * * * /home/dev/.config/systemd/user/systemd-tmpfiles-cleanup/systemd-tmpfiles-cleanu…...
第二章 智能家居子系统——C51单片机 配置波特率115200
前言 本章为智能家居项目的第二章,本章主要写51单片机的定时器timer,串口UART,中断,外接模块DHT11 同项目其他博文: 项目的概述链接:Linux智能家居项目概述-CSDN博客 第一章 主控代码开发链接:…...
registry镜像仓库通过HTTP API删除镜像
registry组件提供了HTTP的接口,可以参考:官网API说明 删除思路: 镜像由多个layers层组成,DELETE /v2/<name>/blobs/<digest>可以用来删除一个单独的层,但是我们的目的不是要删除层。 我们用DELETE /v2/…...
【ATTCK】ATTCK视角下的水坑钓鱼攻防战法
在网络安全领域,ATT&CK已经成为了研究和理解恶意攻击者行为的重要工具。站在攻击者的视角,ATT&CK为我们描绘了他们在攻击过程中所使用的各种战术、技术和常见知识。本文将结合ATT&CK框架,对水坑钓鱼攻击进行深入分析,…...

Linux应用开发之网络套接字编程(实例篇)
服务端与客户端单连接 服务端代码 #include <sys/socket.h> #include <sys/types.h> #include <netinet/in.h> #include <stdio.h> #include <stdlib.h> #include <string.h> #include <arpa/inet.h> #include <pthread.h> …...
应用升级/灾备测试时使用guarantee 闪回点迅速回退
1.场景 应用要升级,当升级失败时,数据库回退到升级前. 要测试系统,测试完成后,数据库要回退到测试前。 相对于RMAN恢复需要很长时间, 数据库闪回只需要几分钟。 2.技术实现 数据库设置 2个db_recovery参数 创建guarantee闪回点,不需要开启数据库闪回。…...

【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...

dedecms 织梦自定义表单留言增加ajax验证码功能
增加ajax功能模块,用户不点击提交按钮,只要输入框失去焦点,就会提前提示验证码是否正确。 一,模板上增加验证码 <input name"vdcode"id"vdcode" placeholder"请输入验证码" type"text&quo…...

376. Wiggle Subsequence
376. Wiggle Subsequence 代码 class Solution { public:int wiggleMaxLength(vector<int>& nums) {int n nums.size();int res 1;int prediff 0;int curdiff 0;for(int i 0;i < n-1;i){curdiff nums[i1] - nums[i];if( (prediff > 0 && curdif…...

MMaDA: Multimodal Large Diffusion Language Models
CODE : https://github.com/Gen-Verse/MMaDA Abstract 我们介绍了一种新型的多模态扩散基础模型MMaDA,它被设计用于在文本推理、多模态理解和文本到图像生成等不同领域实现卓越的性能。该方法的特点是三个关键创新:(i) MMaDA采用统一的扩散架构…...

【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
Java毕业设计:WML信息查询与后端信息发布系统开发
JAVAWML信息查询与后端信息发布系统实现 一、系统概述 本系统基于Java和WML(无线标记语言)技术开发,实现了移动设备上的信息查询与后端信息发布功能。系统采用B/S架构,服务器端使用Java Servlet处理请求,数据库采用MySQL存储信息࿰…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...
libfmt: 现代C++的格式化工具库介绍与酷炫功能
libfmt: 现代C的格式化工具库介绍与酷炫功能 libfmt 是一个开源的C格式化库,提供了高效、安全的文本格式化功能,是C20中引入的std::format的基础实现。它比传统的printf和iostream更安全、更灵活、性能更好。 基本介绍 主要特点 类型安全:…...