当前位置: 首页 > news >正文

论文笔记:AttnMove: History Enhanced Trajectory Recovery via AttentionalNetwork

AAAI 2021

1 intro

1.1 背景

  • 将用户稀疏的轨迹数据恢复至细粒度的轨迹数据是十分重要的
  • 恢复稀疏轨迹数据至细粒度轨迹数据是非常困难的
    • 已观察到的用户位置数据十分稀疏,使得未观察到的用户位置存在较多的不确定性
    • 真实数据中存在大量噪声,如何有效的挖掘周期性规律存在一定困难
    • 经常在历史轨迹中被访问的地点并不一定会是目标时间窗缺失的地点,如何利用用户历史上的位置数据是另一个挑战

1.2 论文思路

  • 提出了一个基于注意力机制的神经网络结构AttnMove用以恢复用户的移动位置
  • 主要从以下三个方面着手解决数据稀疏问题
    • 为了获取用户移动特征及推测缺失数据中最有可能访问的地点,本文利用轨迹内注意力机制设计了一个当前处理器用以初步填补缺失位置
    • 利用另一个轨迹内注意力机制设计了一个历史处理器用以挖掘不同历史轨迹的周期性特征
    • 为了融合当前处理器以及历史处理器提取出来的特征并预测用户缺失地点,本文提出了一个基于轨迹间注意力地点生成注意力机制的轨迹恢复模块
      • 轨迹间注意力机制——用于生成历史轨迹对于当前移动状态影响的权重
      • 地点生成注意力机制——用于考虑时空约束

2 问题定义

  • 轨迹:一个用户一天内按时间顺序的活动位置序列
    • \tau_{u}^n=l_u^{n,1}\rightarrow l_u^{n,2}\rightarrow \cdots,l_u^{n,l}\rightarrow l_u^{n,\tau}
      • l_{u}^{n,t}表示用户u在第n天第t个时间间隙所处的位置
      • 如果用户在t个时间间隙的位置信息未被观察到,则l_{u}^{n,t}为空
    • \tau_u^n为用户当前轨迹,\{\tau_u^1,\tau_u^2,\cdots,\tau_u^{n-1}\}为用户u的历史轨迹

本文将轨迹恢复问题定义为,给定一个用户当前轨迹及历史轨迹,恢复当前轨迹中的缺失位置信息,用以重建当前轨迹

3 模型

4 实验结果

4.1 数据

  • 分别在Tencent及Geolife两个数据集上进行了实验。
  • 将北京地区划分成10655个格子,每个格子平均256平方米,每条轨迹的时间间隙设定为30分钟

4.2 结果

MAP是平均Precision

相关文章:

论文笔记:AttnMove: History Enhanced Trajectory Recovery via AttentionalNetwork

AAAI 2021 1 intro 1.1 背景 将用户稀疏的轨迹数据恢复至细粒度的轨迹数据是十分重要的恢复稀疏轨迹数据至细粒度轨迹数据是非常困难的 已观察到的用户位置数据十分稀疏,使得未观察到的用户位置存在较多的不确定性真实数据中存在大量噪声,如何有效的挖…...

Django之视图层

目录 一、三板斧的使用 二、JsonReponse序列化类的使用 三、 form表单上传文件 数据准备 数据处理 (1)post请求数据 (2)文件数据获取 四、 FBV与CBV 五、CBV的源码分析 as_view 方法 一、三板斧的使用 HttpResponse 返回字符串类型render 渲染html页面,并…...

DAY54 392.判断子序列 + 115.不同的子序列

392.判断子序列 题目要求:给定字符串 s 和 t ,判断 s 是否为 t 的子序列。 字符串的一个子序列是原始字符串删除一些(也可以不删除)字符而不改变剩余字符相对位置形成的新字符串。(例如,"ace"是…...

【Nginx】nginx | 微信小程序验证域名配置

【Nginx】nginx | 微信小程序验证域名配置 一、说明二、域名管理 一、说明 小程序需要添加头条的功能,内容涉及到富文本内容显示图片资源存储在minio中,域名访问。微信小程序需要验证才能显示。 二、域名管理 服务器是阿里云,用的宝塔管理…...

大数据Doris(二十二):数据查看导入

文章目录 数据查看导入 数据查看导入 Broker load 导入方式由于是异步的,所以用户必须将创建导入的 Label 记录,并且在查看导入命令中使用 Label 来查看导入结果。查看导入命令在所有导入方式中是通用的,具体语法可执行 HELP SHOW LOAD 查看。 show load order by create…...

STM32 I2C详解

STM32 I2C详解 I2C简介 I2C(Inter IC Bus)是由Philips公司开发的一种通用数据总线 两根通信线: SCL(Serial Clock)串行时钟线,使用同步的时序,降低对硬件的依赖,同时同步的时序稳定…...

软考 系统架构设计师系列知识点之云计算(1)

所属章节: 第11章. 未来信息综合技术 第6节. 云计算和大数据技术概述 大数据和云计算已成为IT领域的两种主流技术。“数据是重要资产”这一概念已成为大家的共识,众多公司争相分析、挖掘大数据背后的重要财富。同时学术界、产业界和政府都对云计算产生了…...

VS Code画流程图:draw.io插件

文章目录 简介快捷键 简介 Draw.io是著名的流程图绘制软件,开源免费,对标Visio,用过的都说好。而且除了提供常规的桌面软件之外,直接访问draw.io就可以在线使用,堪称百分之百跨平台,便捷性直接拉满。 那么…...

计算机 - - - 浏览器网页打开本地exe程序,网页打开微信,网页打开迅雷

效果 在电脑中安装了微信和迅雷,可以通过在地址栏中输入weixin:打开微信,输入magnet:打开迅雷。 同理:在网页中使用a标签,点击后跳转链接打开weixin:,也会同样打开微信。 运用同样的原理,在网页中点击超…...

C_6练习题

一、单项选择题(本大题共20小题,每小题2分,共40分。在每小题给出的四个备选项中,选出一个正确的答案,并将所选项前的字母填写在答题纸的相应位置上。) 下列叙述中正确的是()。 A.C语言程序将从源程序中第一个函数开始执行 B.可以在程序中由用户指定任意一个函数作为…...

XUbuntu22.04之安装pkg-config(一百九十二)

简介: CSDN博客专家,专注Android/Linux系统,分享多mic语音方案、音视频、编解码等技术,与大家一起成长! 优质专栏:Audio工程师进阶系列【原创干货持续更新中……】🚀 人生格言: 人生…...

【Proteus仿真】【51单片机】拔河游戏设计

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真51单片机控制器,使用按键、LED、动态数码管模块等。 主要功能: 系统运行后,指示灯处于中间位置,数码管显示得分0,当按下…...

第3关:集合操作100

任务描述相关知识编程要求测试说明 任务描述 本关任务:使用 集合操作解决实际问题 相关知识 1.集合并操作符 可转换为SQL 若R,S的属性名不同,可使用重命名使相应列名一致后进行并操作 例如:R(A,B,C) S(D,E,F) select A,B from R union sel…...

八:ffmpeg命令提取像素格式和PCM数据

一、提取YUV #提取3秒数据,分辨率和源视频一致 fmpeg -i test_1280x720.mp4 -t 3 -pix_fmt yuv420p yuv420p_orig.yuv#提取3秒数据,分辨率转为320x240 ffmpeg -i test_1280x720.mp4 -t 3 -pix_fmt yuv420p -s 320x240 yuv420p_320x240.yuv 二、提取RGB…...

rinex3.04 导航文件

GPS GLA BDS GLO...

linux rsyslog日志采集格式设定二

linux rsyslog日志采集格式设定二 1.创建日志接收模板 打开/etc/rsyslog.conf文件,在GLOBAL DIRECTIVES模块下任意位置添加以下内容 命令: vim /etc/rsyslog.conf 测试:rsyslog.conf文件结尾添加以下内容 $template ztj,"%timegenerated% %hostname% %TIMESTAMP:…...

八股文-面向对象的理解

近年来,IT行业的环境相较以往显得有些严峻,因此一直以来,我都怀有一个愿望,希望能够创建一个分享面试经验的网站。由于个人有些懒惰,也较为喜欢玩乐,导致计划迟迟未能实现。然而,随着年底的临近…...

LeetCode【238】除自身意外的数组的乘积

题目&#xff1a; 思路&#xff1a; https://zhuanlan.zhihu.com/p/109306706?utm_id0 代码&#xff1a; int n nums.length;int[] l new int[nums.length];int[] r new int[nums.length];l[0] 1;r[n-1] 1;for (int i1;i<nums.length;i) {l[i] l[i-1] * nums[i-1]…...

c语言从入门到实战——基于指针的数组与指针数组

基于指针的数组与指针数组 前言1. 数组名的理解2. 使用指针访问数组3. 一维数组传参的本质4. 冒泡排序5. 二级指针6. 指针数组7. 指针数组模拟二维数组 前言 指针的数组是指数组中的元素都是指针类型&#xff0c;它们指向某种数据类型的变量。 1. 数组名的理解 我们在使用指针…...

AUTOSAR汽车电子嵌入式编程精讲300篇-面向车载CAN网络的路由和ECU刷写方法

目录 前言 研究现状 车载CAN的“高层协议”研究现状 车载ECU刷写方法研究现状...

【Java学习笔记】Arrays类

Arrays 类 1. 导入包&#xff1a;import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序&#xff08;自然排序和定制排序&#xff09;Arrays.binarySearch()通过二分搜索法进行查找&#xff08;前提&#xff1a;数组是…...

条件运算符

C中的三目运算符&#xff08;也称条件运算符&#xff0c;英文&#xff1a;ternary operator&#xff09;是一种简洁的条件选择语句&#xff0c;语法如下&#xff1a; 条件表达式 ? 表达式1 : 表达式2• 如果“条件表达式”为true&#xff0c;则整个表达式的结果为“表达式1”…...

成都鼎讯硬核科技!雷达目标与干扰模拟器,以卓越性能制胜电磁频谱战

在现代战争中&#xff0c;电磁频谱已成为继陆、海、空、天之后的 “第五维战场”&#xff0c;雷达作为电磁频谱领域的关键装备&#xff0c;其干扰与抗干扰能力的较量&#xff0c;直接影响着战争的胜负走向。由成都鼎讯科技匠心打造的雷达目标与干扰模拟器&#xff0c;凭借数字射…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

MySQL用户和授权

开放MySQL白名单 可以通过iptables-save命令确认对应客户端ip是否可以访问MySQL服务&#xff1a; test: # iptables-save | grep 3306 -A mp_srv_whitelist -s 172.16.14.102/32 -p tcp -m tcp --dport 3306 -j ACCEPT -A mp_srv_whitelist -s 172.16.4.16/32 -p tcp -m tcp -…...

Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)

参考官方文档&#xff1a;https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java&#xff08;供 Kotlin 使用&#xff09; 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)

本期内容并不是很难&#xff0c;相信大家会学的很愉快&#xff0c;当然对于有后端基础的朋友来说&#xff0c;本期内容更加容易了解&#xff0c;当然没有基础的也别担心&#xff0c;本期内容会详细解释有关内容 本期用到的软件&#xff1a;yakit&#xff08;因为经过之前好多期…...

让回归模型不再被异常值“带跑偏“,MSE和Cauchy损失函数在噪声数据环境下的实战对比

在机器学习的回归分析中&#xff0c;损失函数的选择对模型性能具有决定性影响。均方误差&#xff08;MSE&#xff09;作为经典的损失函数&#xff0c;在处理干净数据时表现优异&#xff0c;但在面对包含异常值的噪声数据时&#xff0c;其对大误差的二次惩罚机制往往导致模型参数…...

CRMEB 中 PHP 短信扩展开发:涵盖一号通、阿里云、腾讯云、创蓝

目前已有一号通短信、阿里云短信、腾讯云短信扩展 扩展入口文件 文件目录 crmeb\services\sms\Sms.php 默认驱动类型为&#xff1a;一号通 namespace crmeb\services\sms;use crmeb\basic\BaseManager; use crmeb\services\AccessTokenServeService; use crmeb\services\sms\…...

【MATLAB代码】基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),附源代码|订阅专栏后可直接查看

文章所述的代码实现了基于最大相关熵准则(MCC)的三维鲁棒卡尔曼滤波算法(MCC-KF),针对传感器观测数据中存在的脉冲型异常噪声问题,通过非线性加权机制提升滤波器的抗干扰能力。代码通过对比传统KF与MCC-KF在含异常值场景下的表现,验证了后者在状态估计鲁棒性方面的显著优…...