(论文阅读31/100)Stacked hourglass networks for human pose estimation
| 31.文献阅读笔记 | ||
| 简介 | 题目 | Stacked hourglass networks for human pose estimation |
| 作者 | Alejandro Newell, Kaiyu Yang, and Jia Deng, ECCV, 2016. | |
| 原文链接 | https://arxiv.org/pdf/1603.06937.pdf | |
| 关键词 | Human Pose Estimation | |
| 研究问题 | CNN运用于Human Pose Estimation, 重复自底向上、自顶向下推理。 早期的工作:使用稳健的图像特征(局部解释)和复杂的结构化预测(推断全局一致的姿态)来解决这些困难。 现在:普遍采用卷积神经网络作为其主要构建模块,很大程度上取代了手工制作的特征和图形模型。 任务:从RGB图像中对单个人的姿态进行关键点定位。 | |
| 研究方法 | “stacked hourglass” network: ![]() 该网络在图像的所有尺度上捕获和整合信息,基于可视化的池化和后续上采样的步骤来得到网络的最终输出。 不同于以前的设计,主要是在其更对称的拓扑结构。 连续地将多个沙漏模块端到端地放在一起,在单个沙漏上进行扩展。这允许跨尺度自下而上、自上而下的重复推断。结合中间监督的使用,重复的双向推理对网络的最终性能至关重要。 有些方法通过使用单独的管道来解决这个问题,即在多个分辨率下独立处理图像,然后在网络中合并特征。 作者选择使用skip layers的单一管道,以保留每个分辨率下的空间信息。 网络的输出是一组热图,对于给定的热图,网络会预测每个像素上出现关节的概率。 ![]() 以 256x256 的全输入分辨率运行需要大量 GPU 内存,因此沙漏的最高分辨率(也就是最终输出分辨率)为 64x64。这并不影响网络生成精确联合预测的能力。整个网络从一个步长为 2 的 7x7 卷积层开始,然后是一个残差模块和一轮最大池化,将分辨率从 256 降到 64。 在图 3 所示的沙漏之前有两个残差模块。在整个沙漏过程中,所有残差模块都会输出 256 个特征。 使用 1x1 卷积来减少步骤是有价值的,使用连续的较小滤波器来捕捉更大的空间背景也是有好处的。例如,可以用两个独立的 3x3 滤波器代替 5x5 滤波器。 ![]() 将一个沙漏的输出作为下一个沙漏的输入。 通过额外的 1x1 卷积将中间预测映射到更多通道,从而将中间预测重新整合到特征空间中。这些特征与前一个沙漏阶段输出的特征一起被添加回沙漏的中间特征中(如图 4 所示)。由此产生的输出可直接作为下一个沙漏模块的输入,从而生成另一组预测结果。在最终的网络设计中,使用了八个沙漏。值得注意的是,沙漏模块之间并不共享权重,而且所有沙漏的预测结果都使用相同的ground truth,因此会产生损失。 网络在确定哪个人值得注释时,无法获得足够的信息。为此,我们对网络进行了训练,使其只对位于正中心的人进行注释。 | |
| 研究结论 | 在MPII上,所有关节的平均精度都有超过2 %的提高,对于更困难的关节,如膝盖和脚踝,平均精度提高了4 - 5 % | |
| 创新不足 | 当图像中有多个人物时,一致性问题就变得尤为重要。网络必须决定对谁进行注释,唯一信号就是目标人物的居中和缩放,相信输入会足够清晰,便于解析。遗憾的是,当人物距离很近甚至重叠时,这偶尔会导致模糊不清的情况, | |
| 额外知识 | 图像处理: 自下而上:高分辨率到低分辨率 自上而下:低分辨率到高分辨率 上:低分辨率 提供更多语义信息,具有更大的视野 下:高分辨率 有更多像素,提供更多细节信息 全卷积网络和整体嵌套架构,自下而上处理能力都很强(即提取语义信息),但是自上而下处理能力都很弱,只能对多尺度预测进行合并。 | |
相关文章:
(论文阅读31/100)Stacked hourglass networks for human pose estimation
31.文献阅读笔记 简介 题目 Stacked hourglass networks for human pose estimation 作者 Alejandro Newell, Kaiyu Yang, and Jia Deng, ECCV, 2016. 原文链接 https://arxiv.org/pdf/1603.06937.pdf 关键词 Human Pose Estimation 研究问题 CNN运用于Human Pose E…...
【第2章 Node.js基础】2.6 Node.js 的Buffer数据类型
Buffer数据类型 文章目录 Buffer数据类型什么是Buffer数据类型Buffer 的特点 创建Buffer实例Buffer用于编码转换将Buffer 实例转换为JSON 对象Buffer实例基本操作1. 写入Buffer实例:2. 从Buffer实例读取数据:3. Buffer实例合并: 4. Buffer实例…...
reactive和effect,依赖收集触发依赖
通过上一篇文章已经初始化项目,集成了ts和jest。本篇实现Vue3中响应式模块里的reactive方法。 前置知识要求 如果你熟练掌握Map, Set, Proxy, Reflect,可直接跳过这部分。 Map Map是一种用于存储键值对的集合,并且能够记住键的原始插入顺…...
【C#学习】backgroundWorker控件
BackgroundWorker 控件的几个实例(C# backgroundworker使用方法): 在 WinForms 中,有时要执行耗时的操作,在该操作未完成之前操作用户界面,会导致用户界面停止响应。 解决的方法就是新开一个线程ÿ…...
Istio学习笔记-部署模型
参考:Istioldie 1.18 / 部署模型 当您将 Istio 用于生产环境部署时,需要确定一系列的问题。 网格将被限制在单个集群中还是分布在多个集群中? 是将所有服务都放置在单个完全连接的网络中,还是需要网关来跨多个网络连接服务&#…...
磁盘调度算法
磁盘调度算法是计算机操作系统中用于管理磁盘上的数据访问的重要组成部分。这些算法有助于优化数据的读写操作,以减少磁盘访问时间,提高系统性能。以下是一些常见的磁盘调度算法: 先来先服务(FCFS,First-Come-First-Se…...
力扣题库2. 两数相加
给你两个 非空 的链表,表示两个非负的整数。它们每位数字都是按照 逆序 的方式存储的,并且每个节点只能存储 一位 数字。 请你将两个数相加,并以相同形式返回一个表示和的链表。 你可以假设除了数字 0 之外,这两个数都不会以 0 开…...
【Linux】第十六站:进程地址空间
文章目录 一、程序地址空间1.内存的分布2.static修饰后为什么不会被释放3.一个奇怪的现象 二、进程地址空间1.前面现象的原因2.地址空间究竟是什么?3.为什么要有进程地址空间4.页表5.什么叫进程?6.进程具有独立性。为什么?怎么做到呢…...
基于Springboot的影城管理系统(有报告)。Javaee项目,springboot项目。
演示视频: 基于Springboot的影城管理系统(有报告)。Javaee项目,springboot项目。 前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站。 项目介绍…...
如何在面试中胜出?接口自动化面试题安排上
📢专注于分享软件测试干货内容,欢迎点赞 👍 收藏 ⭐留言 📝 如有错误敬请指正!📢交流讨论:欢迎加入我们一起学习!📢资源分享:耗时200小时精选的「软件测试」资…...
联邦学习研究综述笔记
联邦学习 联邦学习的定义:联邦学习是一种分布式机器学习架构,包含多个客户端(参与者)和一个聚合服务器。客服端(参与方):在本地使用自己的私有数据训练模型,训练完成之后将模型的参…...
RedisTemplate乱码问题
其实这是在解决一个项目问题是发现的,因为原开发者的大意,造成了系统出现严重的逻辑问题。 因为系统系统采用分模块开发,某模块使用Spring提供的RedisTemplate进行值的读写,另一位使用了框架基于Jedis的一套公用方法进行值的读写…...
Java用户和内核交互图
...
2023.11.14使用bootstrap制作一个简洁的前端注册登录页
2023.11.14使用bootstrap制作一个简洁的前端注册登录页 比较简洁的登录页,主要是为自己开发的一些平台页面做测试用,前端具备功能如下: (1)输入用户名、密码,需补充后端验证代码。 (2ÿ…...
Avatar虚拟形象解决方案,趣味化的视频拍摄与直播新体验
企业们正在寻找新的方式来吸引和保持观众的注意力,一种新兴的解决方案就是使用Avatar虚拟形象技术,这种技术可以让用户在视频拍摄或直播场景中,以自定义的数字人形象出现,同时保持所有的表情和脸部驱动。美摄科技正是这个领域的领军者&#x…...
MongoDB备份与恢复以及导入导出
MongoDB备份与恢复 1、mongodump数据备份 在Mongodb中我们使用mongodump命令来备份MongoDB数据。该命令可以导出所有数据 (数据和数据结构) 或指定数据(集合、部分集合内容)到指定目录中。 语法: mongodump -h dbhost -d dbname -o dbdirec…...
如何挑选猫主食罐头?宠物店自用的5款猫主食罐头推荐!
临近双十二大促,是时候给家里的猫主子屯猫主食罐头了。许多铲屎官看大促的各种品牌宣传,看到眼花缭乱,不知道选哪些猫主食罐头好,胡乱选又怕踩坑。 猫罐头侠闪亮登场!如何挑选猫主食罐头?作为经营宠物店7年…...
立哥先进研发-API安全方案
项目背景:随着技术进步,很多优秀技术也被用在黑灰产之中,例如爬虫系统在票务系统中的滥用,尤其机票系统。机票爬虫们威力之大,让人叹为观止:多数订票网站,真实用户产生的不到10%,其浏…...
小函数:Lambda表达式(Java篇)
Lambda表达式的使用场景:用以简化接口实现。 关于接口实现,可以有很多种方式来实现。例如:设计接口的实现类、使用匿名内部类。 但是lambda表达式,比这两种方式都简单! lambda表达式毕竟只是⼀个匿名方法。当实现的接…...
RSS订阅快速连接Notion
数环通让您可以通过不到几分钟的时间即可实现RSS订阅与Notion的对接与集成,从而高效实现工作流程自动化,降本增效! 1.产品介绍 RSS订阅是数环通的内置应用,很多用户通过RSS订阅来收集自己在各大平台上看的内容,当RSS…...
C++_核心编程_多态案例二-制作饮品
#include <iostream> #include <string> using namespace std;/*制作饮品的大致流程为:煮水 - 冲泡 - 倒入杯中 - 加入辅料 利用多态技术实现本案例,提供抽象制作饮品基类,提供子类制作咖啡和茶叶*//*基类*/ class AbstractDr…...
【杂谈】-递归进化:人工智能的自我改进与监管挑战
递归进化:人工智能的自我改进与监管挑战 文章目录 递归进化:人工智能的自我改进与监管挑战1、自我改进型人工智能的崛起2、人工智能如何挑战人类监管?3、确保人工智能受控的策略4、人类在人工智能发展中的角色5、平衡自主性与控制力6、总结与…...
如何将联系人从 iPhone 转移到 Android
从 iPhone 换到 Android 手机时,你可能需要保留重要的数据,例如通讯录。好在,将通讯录从 iPhone 转移到 Android 手机非常简单,你可以从本文中学习 6 种可靠的方法,确保随时保持连接,不错过任何信息。 第 1…...
Qt Http Server模块功能及架构
Qt Http Server 是 Qt 6.0 中引入的一个新模块,它提供了一个轻量级的 HTTP 服务器实现,主要用于构建基于 HTTP 的应用程序和服务。 功能介绍: 主要功能 HTTP服务器功能: 支持 HTTP/1.1 协议 简单的请求/响应处理模型 支持 GET…...
CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
《C++ 模板》
目录 函数模板 类模板 非类型模板参数 模板特化 函数模板特化 类模板的特化 模板,就像一个模具,里面可以将不同类型的材料做成一个形状,其分为函数模板和类模板。 函数模板 函数模板可以简化函数重载的代码。格式:templa…...
在QWebEngineView上实现鼠标、触摸等事件捕获的解决方案
这个问题我看其他博主也写了,要么要会员、要么写的乱七八糟。这里我整理一下,把问题说清楚并且给出代码,拿去用就行,照着葫芦画瓢。 问题 在继承QWebEngineView后,重写mousePressEvent或event函数无法捕获鼠标按下事…...
Git 3天2K星标:Datawhale 的 Happy-LLM 项目介绍(附教程)
引言 在人工智能飞速发展的今天,大语言模型(Large Language Models, LLMs)已成为技术领域的焦点。从智能写作到代码生成,LLM 的应用场景不断扩展,深刻改变了我们的工作和生活方式。然而,理解这些模型的内部…...


