当前位置: 首页 > news >正文

自定义Graph Component:1.2-其它Tokenizer具体实现

  本文主要介绍了Rasa中相关Tokenizer的具体实现,包括默认Tokenizer和第三方Tokenizer。前者包括JiebaTokenizer、MitieTokenizer、SpacyTokenizer和WhitespaceTokenizer,后者包括BertTokenizer和AnotherWhitespaceTokenizer。

一.JiebaTokenizer
  JiebaTokenizer类整体代码结构,如下所示:

  加载自定义字典代码,如下所示[3]:

@staticmethod
def _load_custom_dictionary(path: Text) -> None:"""Load all the custom dictionaries stored in the path.  # 加载存储在路径中的所有自定义字典。More information about the dictionaries file format can be found in the documentation of jieba. https://github.com/fxsjy/jieba#load-dictionary"""print("JiebaTokenizer._load_custom_dictionary()")import jiebajieba_userdicts = glob.glob(f"{path}/*")  # 获取路径下的所有文件。for jieba_userdict in jieba_userdicts:  # 遍历所有文件。logger.info(f"Loading Jieba User Dictionary at {jieba_userdict}")  # 加载结巴用户字典。jieba.load_userdict(jieba_userdict)  # 加载用户字典。

  实现分词的代码为tokenize()方法,如下所示:

def tokenize(self, message: Message, attribute: Text) -> List[Token]:"""Tokenizes the text of the provided attribute of the incoming message."""  # 对传入消息的提供属性的文本进行tokenize。print("JiebaTokenizer.tokenize()")import jiebatext = message.get(attribute)  # 获取消息的属性tokenized = jieba.tokenize(text)  # 对文本进行标记化tokens = [Token(word, start) for (word, start, end) in tokenized]  # 生成标记return self._apply_token_pattern(tokens)

  self._apply_token_pattern(tokens)数据类型为List[Token]。Token的数据类型为:

class Token:# 由将单个消息拆分为多个Token的Tokenizers使用def __init__(self,text: Text,start: int,end: Optional[int] = None,data: Optional[Dict[Text, Any]] = None,lemma: Optional[Text] = None,) -> None:"""创建一个TokenArgs:text: The token text.  # token文本start: The start index of the token within the entire message.  # token在整个消息中的起始索引end: The end index of the token within the entire message.  # token在整个消息中的结束索引data: Additional token data.  # 附加的token数据lemma: An optional lemmatized version of the token text.  # token文本的可选词形还原版本"""self.text = textself.start = startself.end = end if end else start + len(text)self.data = data if data else {}self.lemma = lemma or text

  特别说明:JiebaTokenizer组件的is_trainable=True。


二.MitieTokenizer
  MitieTokenizer类整体代码结构,如下所示:

  核心代码tokenize()方法代码,如下所示:

def tokenize(self, message: Message, attribute: Text) -> List[Token]:"""Tokenizes the text of the provided attribute of the incoming message."""  # 对传入消息的提供属性的文本进行tokenizeimport mitietext = message.get(attribute)encoded_sentence = text.encode(DEFAULT_ENCODING)tokenized = mitie.tokenize_with_offsets(encoded_sentence)tokens = [self._token_from_offset(token, offset, encoded_sentence)for token, offset in tokenized]return self._apply_token_pattern(tokens)

  特别说明:mitie库在Windows上安装可能麻烦些。MitieTokenizer组件的is_trainable=False。


三.SpacyTokenizer
  首先安装Spacy类库和模型[4][5],如下所示:

pip3 install -U spacy
python3 -m spacy download zh_core_web_sm

  SpacyTokenizer类整体代码结构,如下所示:

  核心代码tokenize()方法代码,如下所示:

def tokenize(self, message: Message, attribute: Text) -> List[Token]:"""Tokenizes the text of the provided attribute of the incoming message."""  # 对传入消息的提供属性的文本进行tokenizedoc = self._get_doc(message, attribute)  # doc是一个Doc对象if not doc:return []tokens = [Token(t.text, t.idx, lemma=t.lemma_, data={POS_TAG_KEY: self._tag_of_token(t)})for t in docif t.text and t.text.strip()]

  特别说明:SpacyTokenizer组件的is_trainable=False。即SpacyTokenizer只有运行组件run_SpacyTokenizer0,没有训练组件。如下所示:


四.WhitespaceTokenizer
  WhitespaceTokenizer主要是针对英文的,不可用于中文。WhitespaceTokenizer类整体代码结构,如下所示:

  其中,predict_schema和train_schema,如下所示:

  rasa shell nlu --debug结果,如下所示:

  特别说明:WhitespaceTokenizer组件的is_trainable=False。


五.BertTokenizer
  rasa shell nlu --debug结果,如下所示:

  BertTokenizer代码具体实现,如下所示:
"""
https://github.com/daiyizheng/rasa-chinese-plus/blob/master/rasa_chinese_plus/nlu/tokenizers/bert_tokenizer.py
"""
from typing import List, Text, Dict, Any
from rasa.engine.recipes.default_recipe import DefaultV1Recipe
from rasa.shared.nlu.training_data.message import Message
from transformers import AutoTokenizer
from rasa.nlu.tokenizers.tokenizer import Tokenizer, Token@DefaultV1Recipe.register(DefaultV1Recipe.ComponentType.MESSAGE_TOKENIZER, is_trainable=False
)
class BertTokenizer(Tokenizer):def __init__(self, config: Dict[Text, Any] = None) -> None:""":param config: {"pretrained_model_name_or_path":"", "cache_dir":"", "use_fast":""}"""super().__init__(config)self.tokenizer = AutoTokenizer.from_pretrained(config["pretrained_model_name_or_path"],  # 指定预训练模型的名称或路径cache_dir=config.get("cache_dir"),  # 指定缓存目录use_fast=True if config.get("use_fast") else False  # 是否使用快速模式)@classmethoddef required_packages(cls) -> List[Text]:return ["transformers"]  # 指定依赖的包@staticmethoddef get_default_config() -> Dict[Text, Any]:"""The component's default config (see parent class for full docstring)."""return {# Flag to check whether to split intents"intent_tokenization_flag": False,# Symbol on which intent should be split"intent_split_symbol": "_",# Regular expression to detect tokens"token_pattern": None,# Symbol on which prefix should be split"prefix_separator_symbol": None,}def tokenize(self, message: Message, attribute: Text) -> List[Token]:text = message.get(attribute)  # 获取文本encoded_input = self.tokenizer(text, return_offsets_mapping=True, add_special_tokens=False)  # 编码文本token_position_pair = zip(encoded_input.tokens(), encoded_input["offset_mapping"])  # 将编码后的文本和偏移量映射成一个元组tokens = [Token(text=token_text, start=position[0], end=position[1]) for token_text, position in token_position_pair]  # 将元组转换成Token对象return self._apply_token_pattern(tokens)

  特别说明:BertTokenizer组件的is_trainable=False。


六.AnotherWhitespaceTokenizer
  AnotherWhitespaceTokenizer代码具体实现,如下所示:

from __future__ import annotations
from typing import Any, Dict, List, Optional, Textfrom rasa.engine.graph import ExecutionContext
from rasa.engine.recipes.default_recipe import DefaultV1Recipe
from rasa.engine.storage.resource import Resource
from rasa.engine.storage.storage import ModelStorage
from rasa.nlu.tokenizers.tokenizer import Token, Tokenizer
from rasa.shared.nlu.training_data.message import Message@DefaultV1Recipe.register(DefaultV1Recipe.ComponentType.MESSAGE_TOKENIZER, is_trainable=False
)
class AnotherWhitespaceTokenizer(Tokenizer):"""Creates features for entity extraction."""@staticmethoddef not_supported_languages() -> Optional[List[Text]]:"""The languages that are not supported."""return ["zh", "ja", "th"]@staticmethoddef get_default_config() -> Dict[Text, Any]:"""Returns the component's default config."""return {# This *must* be added due to the parent class."intent_tokenization_flag": False,# This *must* be added due to the parent class."intent_split_symbol": "_",# This is a, somewhat silly, config that we pass"only_alphanum": True,}def __init__(self, config: Dict[Text, Any]) -> None:"""Initialize the tokenizer."""super().__init__(config)self.only_alphanum = config["only_alphanum"]def parse_string(self, s):if self.only_alphanum:return "".join([c for c in s if ((c == " ") or str.isalnum(c))])return s@classmethoddef create(cls,config: Dict[Text, Any],model_storage: ModelStorage,resource: Resource,execution_context: ExecutionContext,) -> AnotherWhitespaceTokenizer:return cls(config)def tokenize(self, message: Message, attribute: Text) -> List[Token]:text = self.parse_string(message.get(attribute))words = [w for w in text.split(" ") if w]# if we removed everything like smiles `:)`, use the whole text as 1 tokenif not words:words = [text]# the ._convert_words_to_tokens() method is from the parent class.tokens = self._convert_words_to_tokens(words, text)return self._apply_token_pattern(tokens)

  特别说明:AnotherWhitespaceTokenizer组件的is_trainable=False。


参考文献:
[1]自定义Graph Component:1.1-JiebaTokenizer具体实现:https://mp.weixin.qq.com/s/awGiGn3uJaNcvJBpk4okCA
[2]https://github.com/RasaHQ/rasa
[3]https://github.com/fxsjy/jieba#load-dictionary
[4]spaCy GitHub:https://github.com/explosion/spaCy
[5]spaCy官网:https://spacy.io/
[6]https://github.com/daiyizheng/rasa-chinese-plus/blob/master/rasa_chinese_plus/nlu/tokenizers/bert_tokenizer.py

相关文章:

自定义Graph Component:1.2-其它Tokenizer具体实现

本文主要介绍了Rasa中相关Tokenizer的具体实现,包括默认Tokenizer和第三方Tokenizer。前者包括JiebaTokenizer、MitieTokenizer、SpacyTokenizer和WhitespaceTokenizer,后者包括BertTokenizer和AnotherWhitespaceTokenizer。 一.JiebaTokenizer   Ji…...

docker-compose 部署 MySQL 8

目录 前言MySQL 配置文件(my.cnf)docker-compose.yml安装卸载 前言 Windows/Linux 系统通过 docker-compose 部署 MySQL8.0。 MySQL 配置文件(my.cnf) # 服务端参数配置 [mysqld] usermysql # MySQL启动用户 default-storage-engineINNODB # 创建新表时…...

Java设计模式-结构型模式-适配器模式

适配器模式 适配器模式应用场景案例类适配器模式对象适配器模式接口适配器模式适配器模式在源码中的使用 适配器模式 如图:国外插座标准和国内不同,要使用国内的充电器,就需要转接插头,转接插头就是起到适配器的作用 适配器模式&…...

CCF编程能力等级认证GESP—C++4级—样题1

CCF编程能力等级认证GESP—C4级—样题1 单选题(每题 2 分,共 30 分)判断题(每题 2 分,共 20 分)编程题 (每题 25 分,共 50 分)第一题 绝对素数第二题 填幻方 参考答案单选题判断题编程题1编程题…...

Git用pull命令后再直接push有问题

在gitlab新建一个项目&#xff0c;然后拉取到本地&#xff0c;用&#xff1a; git init git pull <远程主机名> 然后就是在本地工作区增加所有文件及文件夹。再添加、提交&#xff0c;都没问题&#xff1a; 但是&#xff0c;git push出问题&#xff1a; 说明本地仓库和…...

C语言不可不敲系列:跳水比赛排名问题

目录 1题干&#xff1a; 2解题思路&#xff1a; 3代码: 4运行结果: 5总结: 1题干&#xff1a; 5位运动员参加了10米台跳水比赛&#xff0c;有人让他们预测比赛结果 A选手说&#xff1a;B第二&#xff0c;我第三&#xff1b; B选手说&#xff1a;我第二&#xff0c;E第四&am…...

Python与ArcGIS系列(二)获取地图文档

目录 0 简述1 获取当前地图文档2 获取磁盘中的地图文档3 获取地图文档的图层0 简述 本篇开始介绍实际代码操作,即利用arcpy(python 包)执行地理数据分析、数据转换、数据管理和地图自动化。通过arcpy调用ArcGIS中任意工具,将其与其他python工具结合使用,形成自己的工作流…...

Ansible自动化部署工具-role模式安装filebeat实际案例分析

语法以及实际案例 平时我们在进行日志收集的时候&#xff0c;往往会在每台机器上安装filebeat&#xff0c;并且由于每台机器运行服务的不同&#xff0c;那么收集日志的配置文件也是不一样的&#xff0c;如何快速高效的部署filebeat以及拥有不同的配置文件就是我们要思考的问题&…...

B2B企业如何打造独立站:从策略到实施的全面指南

随着数字化转型的加速&#xff0c;B2B企业越来越认识到独立站的重要性。然而&#xff0c;如何建设一个优秀的独立站&#xff0c;以及如何将独立站与企业的整体战略相结合&#xff0c;是许多企业面临的挑战。本文将详细探讨B2B企业如何从策略到实施打造一个成功的独立站。 一、…...

JAVA 中集合取交集

日常工作 经常需要取两个数据集的交集。对常用的List 和Set集合做了一个测试 public static void main(String[] args) {List<Integer> list1 Lists.newArrayList();List<Integer> list2 Lists.newArrayList();Set<Integer> set3 Sets.newHashSet();Set&l…...

Android13 Launcher3 定制

去掉Google搜索栏 aosp/packages/apps/Launcher3/src_build_config/com/android/launcher3/BuildConfig.java 修改QSB_ON_FIRST_SCREEN为false public static final boolean QSB_ON_FIRST_SCREEN false;去掉抽屉菜单&#xff0c;所有应用都放到桌面 增加控制变量 aosp/pac…...

其他word转化为PDF的方式

将 Word 文档转换为 PDF 格式&#xff0c;除了使用 COM 自动化外&#xff0c;还有其他一些方法可以在 Java 中实现。这些方法通常更加可靠和跨平台。以下是一些常用的方法&#xff1a; 1. 使用 Apache POI 和 Apache PDFBox 这种方法涉及使用 Apache POI 库读取 Word 文档&am…...

【Axure】axure rp 导入元件库和使用,主流元件库下载使用

vant 元件库下载&#xff1a;Vant4 设计资源 element UI 元件库下载&#xff1a;element ui 设计资源 Andt Design Vue 下载设计资源&#xff1a;Andt Design Vue Andt Design Pro下载设计资源&#xff1a;Andt Design Pro Arco Design 设计资源&#xff1a;Arco Design …...

ISP 处理流程

#灵感# 摆烂时间太长了&#xff0c;感觉知识忘光光了。重新学习&#xff0c;常学常新。 因为公司文档都不让摘抄、截取&#xff0c;所以内容是工作的一些自己记录和网络内容&#xff0c;不对的欢迎批评指正。 1、ISP概述 ISP是Image Signal Processor 的简称&#xff0c;也就…...

【计算思维】少儿编程蓝桥杯青少组计算思维题考试真题及解析C

【科技素养】少儿编程蓝桥杯青少组计算思维题考试真题及解析 1.天平的左右两端分别放有一些砝码&#xff0c;如下图所示&#xff0c;右边的砝码不变&#xff0c;从左边最多拿走几个砝码&#xff0c;可以使天平左右两边平衡&#xff1a; A、1 B、2 C、3 D、4 2.把下面的图形…...

百望云斩获“新华信用金兰杯”ESG优秀案例 全面赋能企业绿色数字化

近年来&#xff0c;中国ESG蓬勃发展&#xff0c;在政策体系构建、ESG信披ESG投资和国际合作等方面都取得了阶段性成效&#xff0c;ESG生态不断完善。全社会对ESG的认识及实践也在不断深化&#xff0c;ESG实践者的队伍在不断发展壮大。 ESG作为识别企业高质量发展的重要指标&…...

bclinux aarch64 ceph 14.2.10 对象存储 http网关 CEPH OBJECT GATEWAY Civetweb

相关内容 bclinux aarch64 ceph 14.2.10 文件存储 Ceph File System, 需要部署mds&#xff1a; ceph-deploy mds-CSDN博客 ceph-deploy bclinux aarch64 ceph 14.2.10【3】vdbench fsd 文件系统测试-CSDN博客 ceph-deploy bclinux aarch64 ceph 14.2.10【2】vdbench rbd 块设…...

2023年亚太杯数学建模思路 - 复盘:人力资源安排的最优化模型

文章目录 0 赛题思路1 描述2 问题概括3 建模过程3.1 边界说明3.2 符号约定3.3 分析3.4 模型建立3.5 模型求解 4 模型评价与推广5 实现代码 建模资料 0 赛题思路 &#xff08;赛题出来以后第一时间在CSDN分享&#xff09; https://blog.csdn.net/dc_sinor?typeblog 1 描述 …...

【广州华锐互动】VR居家防火逃生模拟演练增强训练的真实性

VR软件开发公司广州华锐互动在消防培训领域已开发了多款VR产品&#xff0c;今天为大家介绍VR居家防火逃生模拟演练系统&#xff0c;这是一种基于虚拟现实技术的消防教育训练设备&#xff0c;通过模拟真实的火灾场景&#xff0c;让使用者身临其境地体验火灾逃生过程&#xff0c;…...

PaddleClas学习1——使用PPLCNet模型对车辆属性进行识别(python)

使用PPLCNet模型对车辆属性进行识别 1. 配置PaddlePaddle,PaddleClas环境1.1 安装PaddlePaddle(1)创建 docker 容器(2)退出/进入 docker 容器(3) 安装验证1.2 安装python3.8(可选)1.3 安装 PaddleClas2. 模型推理2.1 下载官方提供的车辆属性模型2.2 基于 Python 预测引…...

XCTF-web-easyupload

试了试php&#xff0c;php7&#xff0c;pht&#xff0c;phtml等&#xff0c;都没有用 尝试.user.ini 抓包修改将.user.ini修改为jpg图片 在上传一个123.jpg 用蚁剑连接&#xff0c;得到flag...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

8k长序列建模,蛋白质语言模型Prot42仅利用目标蛋白序列即可生成高亲和力结合剂

蛋白质结合剂&#xff08;如抗体、抑制肽&#xff09;在疾病诊断、成像分析及靶向药物递送等关键场景中发挥着不可替代的作用。传统上&#xff0c;高特异性蛋白质结合剂的开发高度依赖噬菌体展示、定向进化等实验技术&#xff0c;但这类方法普遍面临资源消耗巨大、研发周期冗长…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

AtCoder 第409​场初级竞赛 A~E题解

A Conflict 【题目链接】 原题链接&#xff1a;A - Conflict 【考点】 枚举 【题目大意】 找到是否有两人都想要的物品。 【解析】 遍历两端字符串&#xff0c;只有在同时为 o 时输出 Yes 并结束程序&#xff0c;否则输出 No。 【难度】 GESP三级 【代码参考】 #i…...

c++ 面试题(1)-----深度优先搜索(DFS)实现

操作系统&#xff1a;ubuntu22.04 IDE:Visual Studio Code 编程语言&#xff1a;C11 题目描述 地上有一个 m 行 n 列的方格&#xff0c;从坐标 [0,0] 起始。一个机器人可以从某一格移动到上下左右四个格子&#xff0c;但不能进入行坐标和列坐标的数位之和大于 k 的格子。 例…...

ETLCloud可能遇到的问题有哪些?常见坑位解析

数据集成平台ETLCloud&#xff0c;主要用于支持数据的抽取&#xff08;Extract&#xff09;、转换&#xff08;Transform&#xff09;和加载&#xff08;Load&#xff09;过程。提供了一个简洁直观的界面&#xff0c;以便用户可以在不同的数据源之间轻松地进行数据迁移和转换。…...

新能源汽车智慧充电桩管理方案:新能源充电桩散热问题及消防安全监管方案

随着新能源汽车的快速普及&#xff0c;充电桩作为核心配套设施&#xff0c;其安全性与可靠性备受关注。然而&#xff0c;在高温、高负荷运行环境下&#xff0c;充电桩的散热问题与消防安全隐患日益凸显&#xff0c;成为制约行业发展的关键瓶颈。 如何通过智慧化管理手段优化散…...

C++.OpenGL (20/64)混合(Blending)

混合(Blending) 透明效果核心原理 #mermaid-svg-SWG0UzVfJms7Sm3e {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-icon{fill:#552222;}#mermaid-svg-SWG0UzVfJms7Sm3e .error-text{fill…...

uniapp手机号一键登录保姆级教程(包含前端和后端)

目录 前置条件创建uniapp项目并关联uniClound云空间开启一键登录模块并开通一键登录服务编写云函数并上传部署获取手机号流程(第一种) 前端直接调用云函数获取手机号&#xff08;第三种&#xff09;后台调用云函数获取手机号 错误码常见问题 前置条件 手机安装有sim卡手机开启…...