scipy实现单因素方差分析
经典例题
某校高二年级共有四个班,采用四种不同的教学方法进行数学教学,为了比较这四种教学法的效果是否存在明显的差异,期末统考后,从这四个班中各抽取 5 名考生的成绩,如下所示。
| 班级 | 一班 | 二班 | 三班 | 四班 | |
| 1 | 75 | 93 | 65 | 72 | |
| 2 | 77 | 80 | 67 | 70 | |
| 3 | 70 | 85 | 77 | 71 | |
| 4 | 88 | 90 | 68 | 65 | |
| 5 | 72 | 84 | 65 | 81 | |
| 6 | 80 | 86 | 64 | 72 | |
| 7 | 79 | 85 | 62 | 68 | |
| 8 | 81 | 81 | 68 | 74 |
问这四种教学法的效果是否存在显著性差异(α =0.05)?
1.计算F值
import numpy as np
from scipy.stats import f_oneway# Data for the four classes
class1 = [75, 77, 70, 88, 72, 80, 79, 81]
class2 = [93, 80, 85, 90, 84, 86, 85, 81]
class3 = [65, 67, 77, 68, 65, 64, 62, 68]
class4 = [72, 70, 71, 65, 81, 72, 68, 74]# Perform one-way ANOVA
f_statistic, p_value = f_oneway(class1, class2, class3, class4)# Output the results
print("F-statistic:", f_statistic)
print("P-value:", p_value)# Interpret the results
alpha = 0.05
if p_value < alpha:print("There is a significant difference in the effectiveness of the teaching methods.")
else:print("There is no significant difference in the effectiveness of the teaching methods.")
F-statistic: 22.045992451864645
P-value: 1.5622062333927252e-07
There is a significant difference in the effectiveness of the teaching methods.
2.计算SS、df和F值
import numpy as np
import pandas as pd
from scipy.stats import f_oneway, f# Data for the four classes
class1 = [75, 77, 70, 88, 72, 80, 79, 81]
class2 = [93, 80, 85, 90, 84, 86, 85, 81]
class3 = [65, 67, 77, 68, 65, 64, 62, 68]
class4 = [72, 70, 71, 65, 81, 72, 68, 74]# Perform one-way ANOVA
f_statistic, p_value = f_oneway(class1, class2, class3, class4)# Degrees of freedom
num_groups = 4
num_samples = len(class1) + len(class2) + len(class3) + len(class4)
df_between = num_groups - 1
df_within = num_samples - num_groups# Calculate sum of squares (SS)
mean_total = np.mean([np.mean(class1), np.mean(class2), np.mean(class3), np.mean(class4)])
ss_total = np.sum((np.concatenate([class1, class2, class3, class4]) - mean_total) ** 2)
ss_between = np.sum([len(class1) * (np.mean(class1) - mean_total) ** 2,len(class2) * (np.mean(class2) - mean_total) ** 2,len(class3) * (np.mean(class3) - mean_total) ** 2,len(class4) * (np.mean(class4) - mean_total) ** 2])
ss_within = np.sum((class1 - np.mean(class1)) ** 2) + \np.sum((class2 - np.mean(class2)) ** 2) + \np.sum((class3 - np.mean(class3)) ** 2) + \np.sum((class4 - np.mean(class4)) ** 2)# Calculate mean squares (MS)
ms_between = ss_between / df_between
ms_within = ss_within / df_within# Calculate F-statistic
f_statistic_manual = ms_between / ms_within# Critical F-value
alpha = 0.05
f_crit = f.ppf(1 - alpha, df_between, df_within)# Create a DataFrame for better tabular representation
data = {'Class 1': class1,'Class 2': class2,'Class 3': class3,'Class 4': class4,
}df = pd.DataFrame(data)# Output the ANOVA results
print("Analysis of Variance (ANOVA):")
print("F-statistic (from scipy.stats):", f_statistic)
print("P-value (from scipy.stats):", p_value)
print("\nManual Calculation:")
print("SS Between:", ss_between)
print("SS Within:", ss_within)
print("DF Between:", df_between)
print("DF Within:", df_within)
print("MS Between:", ms_between)
print("MS Within:", ms_within)
print("F-statistic (manual calculation):", f_statistic_manual)
print("Critical F-value:", f_crit)# Interpret the results
if p_value < alpha:print("\nThere is a significant difference in the effectiveness of the teaching methods.")
else:print("\nThere is no significant difference in the effectiveness of the teaching methods.")
Manual Calculation:
SS Between: 1538.59375
SS Within: 651.375
DF Between: 3
DF Within: 28
MS Between: 512.8645833333334
MS Within: 23.263392857142858
F-statistic (manual calculation): 22.045992451864645
Critical F-value: 2.9466852660172655
相关文章:
scipy实现单因素方差分析
经典例题 某校高二年级共有四个班,采用四种不同的教学方法进行数学教学,为了比较这四种教学法的效果是否存在明显的差异,期末统考后,从这四个班中各抽取 5 名考生的成绩,如下所示。 班级 一班 二班 三班 四班 …...
深度学习实战59-NLP最核心的模型:transformer的搭建与训练过程详解,手把手搭建与跑通
大家好,我是微学AI,今天给大家介绍一下深度学习实战59-NLP最核心的模型:transformer的搭建与训练过程详解,手把手搭建与跑通。transformer是一种基于自注意力机制的深度学习模型,由Vaswani等人在2017年的论文《Attention is All You Need》中提出。它最初被设计用来处理序…...
一阶滤波器(一阶巴特沃斯滤波器)
连续传递函数G(s) 离散传递函数G(z) 转换为差分方程形式 一阶巴特沃斯滤波器Filter Designer参数设计:参考之前的博客Matlab的Filter Designer工具设计二阶低通滤波器 设计采样频率100Hz,截止频率20Hz。 注意:设计参数使用在离散系统中&…...
.net core中前端vue HTML5 History 刷新页面404问题
放到启动的应用程序的最后面 app.Run(async (context) > {context.Response.ContentType "text/html";await context.Response.SendFileAsync(Path.Combine(env.WebRootPath, "index.html")); });https://blog.csdn.net/lee576/article/details/88355…...
【152.乘积最大子数组】
目录 一、题目描述二、算法原理三、代码实现 一、题目描述 二、算法原理 三、代码实现 class Solution { public:int maxProduct(vector<int>& nums) {int nnums.size();vector<int> f(n);vector<int> g(n);f[0]g[0]nums[0];int retnums[0];for(int i1;…...
如何开发OA系统场景的系统架构
1.开发OA系统场景的系统架构 针对开发OA系统的场景,以下是一个简单的系统架构示例,包括前端、后端和数据库三个基本部分: 前端: 使用React框架进行前端开发,构建用户界面和交互逻辑。前端模块包括日程管理模块、文档管…...
spring boot 集成 RedisSearch 和 RedisJSON
1. 准备工作 环境说明 java 8;redis7.2.2,redis集成RedisSearch、redisJson 模块;spring boot 2.5在执行 redis 命令, 或者监控 程序执行的redis 指令时,可以采用 redisinsight查看,下载地址。 背景说明 需…...
【Kotlin精简】第8章 协程
1 简介 Kotlin 中的协程提供了一种全新处理并发的方式,您可以在 Android 平台上使用它来简化异步执行的代码。协程是从 Kotlin 1.3 版本开始引入,但这一概念在编程世界诞生的黎明之际就有了,最早使用协程的编程语言可以追溯到 1967 年的 Sim…...
【MATLAB源码-第79期】基于蚯蚓优化算法(EOA)的栅格路径规划,输出做短路径图和适应度曲线。
操作环境: MATLAB 2022a 1、算法描述 蚯蚓优化算法(Earthworm Optimisation Algorithm, EOA)是一种启发式算法,灵感来源于蚯蚓在自然界中的行为模式。蚯蚓优化算法主要模仿了蚯蚓在寻找食物和逃避天敌时的行为策略。以下是蚯蚓…...
RPC实现简单解析
RPC是什么,先摘取一段解释: RPC全称为远程过程调用(Remote Procedure Call),它是一种计算机通信协议,允许一个计算机程序调用另一个计算机上的子程序,而无需了解底层网络细节。通过RPCÿ…...
【Ubuntu】Ubuntu20.04下安装视频播放器vlc和录屏软件ssr
【Ubuntu】Ubuntu20.04下安装视频播放器vlc和录屏软件ssr 文章目录 【Ubuntu】Ubuntu20.04下安装视频播放器vlc和录屏软件ssr1. 安装视频播放器vlc2. 安装录屏软件ssr 1. 安装视频播放器vlc sudo apt-get install vlcvlc是一款比较简洁的视频播放器,如下所示 2. 安…...
WMS仓储管理系统与TMS系统整合后的优势
随着全球化的加速和供应链网络的日益复杂,仓库和运输成为企业运营中的两个关键环节。为了更高效地管理这两个环节,许多企业开始探索将WMS仓储管理系统和TMS运输管理系统整合的可能性。这种整合不仅可以提升仓库流程的可见性,还有助于改善调度…...
测试的专用
测试...
sqli-labs(Less-4) extractvalue闯关
extractvalue() - Xpath类型函数 1. 确认注入点如何闭合的方式 2. 爆出当前数据库的库名 http://127.0.0.1/sqlilabs/Less-4/?id1") and extractvalue(1,concat(~,(select database()))) --3. 爆出当前数据库的表名 http://127.0.0.1/sqlilabs/Less-4/?id1") …...
Kafka简单汇总
Kafka的结构图 多个Parttion共同组成这个topic的所有消息。每个consumer都属于一个consumer group,每条消息只能被consumer group中的一个Consumer消费, 但可以被多个consumer group消费。即组间数据是共享的,组内数据是竞争的。二、消费模型…...
任务交给谁?委派模式告诉你最佳选择!
文章目录 一、概念二、角色三、代码实现四、委派模式在源码中的体现五、委派模式的优缺点优点缺点 一、概念 委派模式(Delegate Pattern)又叫委托模式,是一种面向对象的设计模式。委派模式是一种行为模式,不属于GOF23种设计模式之中基本作用…...
【JavaEE】Servlet(创建Maven、引入依赖、创建目录、编写及打包、部署和验证、smart Tomcat)
一、什么是Servlet? Servlet 是一种实现动态页面的技术. 是一组 Tomcat 提供给程序猿的 API, 帮助程序猿简单高效的开发一个 web app 1.1 Servlet能干什么? 🚕允许程序猿注册一个类, 在 Tomcat 收到某个特定的 HTTP 请求的时候, 执行这个类…...
降低城市内涝风险,万宾科技内涝积水监测仪的作用
频繁的内涝会削弱和损坏城市的关键基础设施,包括道路、桥梁和公用设施。城市内涝风险降低可以减少交通中断事件,也可以保护居民安全并降低路面维修等成本,进一步确保城市基本服务继续发挥作用。对城市可持续发展来讲有效减少内涝的风险是重要…...
水库大坝安全监测预警系统的重要作用
水库大坝建造在地质构造复杂、岩土特性不均匀的地基上,在各种荷载的作用和自然因素的影响下,其工作性态和安全状况随时都在变化。如果出现异常,又不被及时发现,其后果不堪设想。全天候实时监测,实时掌握水库水位、雨情…...
【AI视野·今日NLP 自然语言处理论文速览 第六十五期】Mon, 30 Oct 2023
AI视野今日CS.NLP 自然语言处理论文速览 Mon, 30 Oct 2023 Totally 67 papers 👉上期速览✈更多精彩请移步主页 Daily Computation and Language Papers An Approach to Automatically generating Riddles aiding Concept Attainment Authors Niharika Sri Parasa,…...
Leetcode 3576. Transform Array to All Equal Elements
Leetcode 3576. Transform Array to All Equal Elements 1. 解题思路2. 代码实现 题目链接:3576. Transform Array to All Equal Elements 1. 解题思路 这一题思路上就是分别考察一下是否能将其转化为全1或者全-1数组即可。 至于每一种情况是否可以达到…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
Qwen3-Embedding-0.6B深度解析:多语言语义检索的轻量级利器
第一章 引言:语义表示的新时代挑战与Qwen3的破局之路 1.1 文本嵌入的核心价值与技术演进 在人工智能领域,文本嵌入技术如同连接自然语言与机器理解的“神经突触”——它将人类语言转化为计算机可计算的语义向量,支撑着搜索引擎、推荐系统、…...
第一篇:Agent2Agent (A2A) 协议——协作式人工智能的黎明
AI 领域的快速发展正在催生一个新时代,智能代理(agents)不再是孤立的个体,而是能够像一个数字团队一样协作。然而,当前 AI 生态系统的碎片化阻碍了这一愿景的实现,导致了“AI 巴别塔问题”——不同代理之间…...
Psychopy音频的使用
Psychopy音频的使用 本文主要解决以下问题: 指定音频引擎与设备;播放音频文件 本文所使用的环境: Python3.10 numpy2.2.6 psychopy2025.1.1 psychtoolbox3.0.19.14 一、音频配置 Psychopy文档链接为Sound - for audio playback — Psy…...
Android 之 kotlin 语言学习笔记三(Kotlin-Java 互操作)
参考官方文档:https://developer.android.google.cn/kotlin/interop?hlzh-cn 一、Java(供 Kotlin 使用) 1、不得使用硬关键字 不要使用 Kotlin 的任何硬关键字作为方法的名称 或字段。允许使用 Kotlin 的软关键字、修饰符关键字和特殊标识…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
接口自动化测试:HttpRunner基础
相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具,支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议,涵盖接口测试、性能测试、数字体验监测等测试类型…...
C# 表达式和运算符(求值顺序)
求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如,已知表达式3*52,依照子表达式的求值顺序,有两种可能的结果,如图9-3所示。 如果乘法先执行,结果是17。如果5…...
C语言中提供的第三方库之哈希表实现
一. 简介 前面一篇文章简单学习了C语言中第三方库(uthash库)提供对哈希表的操作,文章如下: C语言中提供的第三方库uthash常用接口-CSDN博客 本文简单学习一下第三方库 uthash库对哈希表的操作。 二. uthash库哈希表操作示例 u…...
