(论文阅读30/100)Convolutional Pose Machines
| 30.文献阅读笔记CPMs | ||
| 简介 | 题目 | Convolutional Pose Machines |
| 作者 | Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh, CVPR, 2016. | |
| 原文链接 | https://arxiv.org/pdf/1602.00134.pdf | |
| 关键词 | Convolutional Pose Machines(CPMs)、articulated pose estimation | |
| 研究问题 | Pose Machines provide a sequential prediction framework for learning rich implicit spatial models. Pose Machines为了学习丰富的隐式空间模型提供了序列预测框架。 将CNN应用于pose machine framework 梯度消失的问题: 反向传播梯度在网络的多个层中传播时强度会减弱。 增大感受野,一般有如下几种方式: 增大pool,但是这种做法对图片额外添加的信息过多,会牺牲精度; 增大卷积核,但这种方式会增加参数量; 增加卷积层,但卷积层过多会造成网络的负担,造成梯度消失等问题 | |
| 研究方法 | 将CNN应用于pose machine framework 学习图像特征和图像相关的空间模型的task of pose estimation(姿态估计) CNN直接对来自上阶段的belief maps进行操作,对零件位置做出越来越精确的估计,而无需明确的图形模型式推理。 提供了一个自然的学习目标函数,强制执行中间监督,补充反向传播梯度并调节学习过程,解决了梯度消失的难题。 图像特征和前一阶段生成的belief maps都被用作输入。belief maps为后续阶段提供了每个部件位置空间不确定性的非参数编码,使 CPM 能够学习丰富的、与图像相关的部件间关系空间模型。 不使用图形模型,对belief maps进行操作,所以整个架构完全可微分,可以端对端训练。 为了捕捉longrange interactions:需要较大的感受野 ![]() Pose machines 和cnn pose machines对比 输入:裁剪图像归一化为368 × 368 网络结构:五个卷积层和两个1 × 1卷积层组成的网络结构(全卷积结构) 2c:第一阶段仅从局部图像证据中预测部分信念。证据是局部的,因为网络第一阶段的感受野被约束在输出像素位置周围的一个小块上。以一个较小的感受野对图像进行局部检查。 如果人体有p个关节点,那么belief map有p+1层(还有背景层) 其实就是heatmaps,各通道表示各关键点在每个像素位置处的概率 2d:第二阶段网络的输出层获得足够大的感受野,以便学习各部分之间潜在的复杂和long-range correlations。还要输入一个center map。center map是高斯响应,构造响应图的真值。 增大感受野: 增大stride,确实stride越大感受野相应的也增大,并且论文中指出,在高精度区域,8stride和4stride表现一样好。 | |
| 研究结论 | 由卷积网络组成的序列架构能够通过在阶段之间交流日益精炼的不确定性保持信念来隐式地学习姿态的空间模型。 在所有的主要基准上都达到了最先进的准确性。 | |
| 创新不足 | 多人检测失败 ![]() | |
| 额外知识 | 高斯响应 | |
相关文章:
(论文阅读30/100)Convolutional Pose Machines
30.文献阅读笔记CPMs 简介 题目 Convolutional Pose Machines 作者 Shih-En Wei, Varun Ramakrishna, Takeo Kanade, and Yaser Sheikh, CVPR, 2016. 原文链接 https://arxiv.org/pdf/1602.00134.pdf 关键词 Convolutional Pose Machines(CPMs)…...
vue3实现数据大屏内数据向上滚动,鼠标进入停止滚动 vue3+Vue3SeamlessScroll
1.效果图 2.npm下载依赖及main.js文件配置 npm install vue3-seamless-scroll --saveimport vue3SeamlessScroll from vue3-seamless-scroll;app.use(vue3SeamlessScroll) 3.html代码 <!-- scrollFlag为true时再渲染,vue3只要涉及到传值子页面需要加flag判断,否…...
WPF显示3D图形
C# 中的 WPF (Windows Presentation Foundation) 支持显示3D图形。WPF 使用 DirectX 作为底层图形引擎,这意味着它可以处理包括3D图形在内的复杂渲染任务。 在 WPF 中,你可以使用一些内置的类和控件来创建和显示3D对象。这包括 Viewport3D, Camera, Mod…...
Xrdp+Cpolar实现远程访问Linux Kali桌面
XrdpCpolar实现远程访问Linux Kali桌面 文章目录 XrdpCpolar实现远程访问Linux Kali桌面前言1. Kali 安装Xrdp2. 本地远程Kali桌面3. Kali 安装Cpolar 内网穿透4. 配置公网远程地址5. 公网远程Kali桌面连接6. 固定连接公网地址7. 固定地址连接测试 前言 Kali远程桌面的好处在于…...
赚钱
《赚钱》 作者/罗光记 赚钱劳身影未安, 岁月匆匆易逝难。 银钱到手笑颜开, 酒醉灯昏影独寒。 花前月下欢声起, 万金财富待来年。 诗酒飘香梦中笑, 人生何求更多钱。...
Django command执行脚本
python web项目中经常会使用到脚本,一般来说有两种很简单的方法,一种是直接python function,另一种就是 django 自定义command。 对比常规脚本 这里举个简单的例子,比如初始化数据、文件名称为initialize_data.py (1…...
GLSL: Shader cannot be patched for instancing.
最近在 unity 里碰到了这么一个错误,只有这么点信息,让人看着挺懵逼的,后来发现,是因为 unity 的 terrain 组件在设置里勾了 Draw Instanced 选项导致的,感觉应该是 unity 的 bug。 因为错出在 2021,2022就…...
Django测试环境搭建及ORM查询(创建外键|跨表查询|双下划线查询 )
文章目录 一、表查询数据准备及测试环境搭建模型层前期准备测试环境搭建代码演示 二、ORM操作相关方法三、ORM常见的查询关键字四、ORM底层SQL语句五、双下划线查询数据查询(双下划线)双下划线小训练Django ORM __双下划线细解 六、ORM外键字段创建基础表…...
css 设置网页最小字体为12px
谷歌浏览器默认最小字体为12px,但保不准万一有一天谷歌取消这个默认设置,或者一些人在设置中改了最小字体,为了防止万一,故系统设置了最小字体,主要利用了min和var的特性 :root {--responsive-font-size-primary: max…...
Failed to restart networking.service: Unit networking.service not found.
虚拟机Vmware中的Ubuntu20.0没有网络,ifconfig命令没有IP 如果在VMware中运行的Ubuntu 20.04虚拟机没有网络,并且ifconfig命令没有显示IP地址,你可以采取以下几个步骤来诊断和解决问题: 确认虚拟机网络设置: 确保虚拟机的网络适配器是开启的,并且配置正确。确认是否选择…...
基于单片机设计的水平仪(STC589C52+MPU6050)
一、前言 【1】项目背景 水平仪是一种常见的测量工具,用于检测物体或设备的水平姿态。在许多应用中,如建筑、制造和航空等领域,保持设备的水平姿态是非常重要的。为了实现实时的水平检测和显示,基于单片机设计的水平仪是一个常见…...
射频与微波综合测试仪-4958手持式微波综合测试仪
4958 微波综合测试仪 频率范围:1MHz~20GHz 4958手持式微波综合测试仪测量频率范围可达1MHz~20GHz,集电缆和天线驻波比测试、不连续点故障定位测试、插入损耗和增益测试、频谱分析、功率测量等多种功能于一体,携带方便&…...
Redis内存淘汰机制
Redis内存淘汰机制 引言 Redis 启动会加载一个配置: maxmemory <byte> //内存上限 默认值为 0 (window版的限制为100M),表示默认设置Redis内存上限。但是真实开发还是需要提前评估key的体量,提前设置好内容上限。 此时思考一个问题…...
EXCEL——计算数据分散程度的相关函数
一、PERCENTIL函数 1.函数介绍 通常用来返回数据集给定百分点上的值。 2.函数解读 函数公式: PERCENTILE(数据, 百分点) 参数释义: 数据(必填):待处理的数组或数据区域。 百分点(必填)&…...
详解如何使用Jenkins一键打包部署SpringBoot项目
目录 1、Jenkins简介 2、Jenkins的安装及配置 2.1、Docker环境下的安装编辑 2.2、Jenkins的配置 3、打包部署SpringBoot应用 3.1、在Jenkins中创建执行任务 3.2、测试结果 1、Jenkins简介 任何简单操作的背后,都有一套相当复杂的机制。本文将以SpringBoot应…...
【JVM】内存区域划分、类加载机制(双亲委派模型图解)、垃圾回收(可达性分析、分代回收)
一、JVM简介 JVM (Java虚拟机) 是执行Java字节码的虚拟机。它是Java平台的核心,并且为Java代码提供了跨平台的能力。JVM 是一种虚拟的计算机,在其上运行的程序是Java字节码,它提供了Java代码在不同操作系统和硬件平台上执行的能力。JVM 将Ja…...
解决 requests 2.28.x 版本 SSL 错误
最近,在使用requests 2.28.1版本进行HTTP post传输时,您可能遇到了一个问题,即SSL验证失败并显示错误消息(Caused by SSLError(SSLCertVerificationError(1, [SSL: CERTIFICATE_VERIFY_FAILED] certificate verify failed: unable to get loc…...
hive数据质量规范
当谈到大数据处理和分析时,数据质量成为至关重要的因素。Hive作为一种常用的大数据查询和分析工具,也需要遵循一定的数据质量规范以确保数据的准确性、一致性和可靠性。本文将介绍Hive数据质量规范的相关内容,并提供代码示例来说明如何在Hive…...
Jenkinsfile+Dockerfile前端vue自动化部署
前言 本篇主要介绍如何自动化部署前端vue项目 其中,有两种方案: 第一种是利用nginx进行静态资源转发;第二种方案是利用nodejs进行启动访问; 各个组件版本如下: Docker 最新版本;Jenkins 2.387.3nginx …...
SQL server从安装到入门(一)
文章目录 彻底安装怎么安装?Polybase要求安装orcale jre 7更新 51或更高版本?安装完怎么配置?没有SSMS? 熟悉一下SMSS! 根据本人实际安装和初步使用SQL server的过程中,经历的一些关键性的步骤和精品文章。…...
【OSG学习笔记】Day 18: 碰撞检测与物理交互
物理引擎(Physics Engine) 物理引擎 是一种通过计算机模拟物理规律(如力学、碰撞、重力、流体动力学等)的软件工具或库。 它的核心目标是在虚拟环境中逼真地模拟物体的运动和交互,广泛应用于 游戏开发、动画制作、虚…...
相机Camera日志分析之三十一:高通Camx HAL十种流程基础分析关键字汇总(后续持续更新中)
【关注我,后续持续新增专题博文,谢谢!!!】 上一篇我们讲了:有对最普通的场景进行各个日志注释讲解,但相机场景太多,日志差异也巨大。后面将展示各种场景下的日志。 通过notepad++打开场景下的日志,通过下列分类关键字搜索,即可清晰的分析不同场景的相机运行流程差异…...
优选算法第十二讲:队列 + 宽搜 优先级队列
优选算法第十二讲:队列 宽搜 && 优先级队列 1.N叉树的层序遍历2.二叉树的锯齿型层序遍历3.二叉树最大宽度4.在每个树行中找最大值5.优先级队列 -- 最后一块石头的重量6.数据流中的第K大元素7.前K个高频单词8.数据流的中位数 1.N叉树的层序遍历 2.二叉树的锯…...
C++使用 new 来创建动态数组
问题: 不能使用变量定义数组大小 原因: 这是因为数组在内存中是连续存储的,编译器需要在编译阶段就确定数组的大小,以便正确地分配内存空间。如果允许使用变量来定义数组的大小,那么编译器就无法在编译时确定数组的大…...
[论文阅读]TrustRAG: Enhancing Robustness and Trustworthiness in RAG
TrustRAG: Enhancing Robustness and Trustworthiness in RAG [2501.00879] TrustRAG: Enhancing Robustness and Trustworthiness in Retrieval-Augmented Generation 代码:HuichiZhou/TrustRAG: Code for "TrustRAG: Enhancing Robustness and Trustworthin…...
《信号与系统》第 6 章 信号与系统的时域和频域特性
目录 6.0 引言 6.1 傅里叶变换的模和相位表示 6.2 线性时不变系统频率响应的模和相位表示 6.2.1 线性与非线性相位 6.2.2 群时延 6.2.3 对数模和相位图 6.3 理想频率选择性滤波器的时域特性 6.4 非理想滤波器的时域和频域特性讨论 6.5 一阶与二阶连续时间系统 6.5.1 …...
何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡
何谓AI编程【02】AI编程官网以优雅草星云智控为例建设实践-完善顶部-建立各项子页-调整排版-优雅草卓伊凡 背景 我们以建设星云智控官网来做AI编程实践,很多人以为AI已经强大到不需要程序员了,其实不是,AI更加需要程序员,普通人…...
医疗AI模型可解释性编程研究:基于SHAP、LIME与Anchor
1 医疗树模型与可解释人工智能基础 医疗领域的人工智能应用正迅速从理论研究转向临床实践,在这一过程中,模型可解释性已成为确保AI系统被医疗专业人员接受和信任的关键因素。基于树模型的集成算法(如RandomForest、XGBoost、LightGBM)因其卓越的预测性能和相对良好的解释性…...
统计学(第8版)——统计抽样学习笔记(考试用)
一、统计抽样的核心内容与问题 研究内容 从总体中科学抽取样本的方法利用样本数据推断总体特征(均值、比率、总量)控制抽样误差与非抽样误差 解决的核心问题 在成本约束下,用少量样本准确推断总体特征量化估计结果的可靠性(置…...
【QT控件】显示类控件
目录 一、Label 二、LCD Number 三、ProgressBar 四、Calendar Widget QT专栏:QT_uyeonashi的博客-CSDN博客 一、Label QLabel 可以用来显示文本和图片. 核心属性如下 代码示例: 显示不同格式的文本 1) 在界面上创建三个 QLabel 尺寸放大一些. objectName 分别…...

