当前位置: 首页 > news >正文

3.3 Windows驱动开发:内核MDL读写进程内存

MDL内存读写是一种通过创建MDL结构体来实现跨进程内存读写的方式。在Windows操作系统中,每个进程都有自己独立的虚拟地址空间,不同进程之间的内存空间是隔离的。因此,要在一个进程中读取或写入另一个进程的内存数据,需要先将目标进程的物理内存映射到当前进程的虚拟地址空间中,然后才能进行内存读写操作。

MDL结构体是Windows内核中专门用于描述物理内存的数据结构,它包含了一系列的数据元素,包括物理地址、长度、内存映射的虚拟地址等信息。通过创建MDL结构体并调用系统函数将其映射到当前进程的虚拟地址空间中,即可实现跨进程内存读写的操作。

相比于CR3切换方式,MDL内存读写更加稳定、安全,且不会受到寄存器的影响。同时,使用MDL内存读写方式还可以充分利用Windows操作系统的内存管理机制,从而实现更为高效的内存读写操作。因此,MDL内存读写是Windows操作系统中最为常用和推荐的一种跨进程内存读写方式。

3.1.1 MDL读取内存步骤
  • 1.调用PsLookupProcessByProcessId得到进程Process结构,这个函数是用于根据进程ID查找对应的进程对象的函数,通过传入的参数 data->pid 获取到对应的进程ID,然后通过调用 PsLookupProcessByProcessId 函数获取对应的 PEPROCESS 结构。如果获取失败则返回 FALSE。

  • 2.调用KeStackAttachProcess附加到对端进程内,在内核模式下,读取其他进程的内存时需要先附加到对应进程的上下文中,才能读取该进程的内存。因此,这里调用 KeStackAttachProcess 函数将当前线程切换到目标进程的上下文中。同时,为了在后面可以正确地从目标进程的上下文中返回,还需要保存当前进程的上下文状态。

  • 3.调用ProbeForRead检查内存是否可读写,在内核模式下,需要保证访问其他进程的内存是合法的,因此需要先调用 ProbeForRead 函数检查读取的内存空间是否可读写。如果该空间不可读写,则会触发异常,这里通过异常处理机制来处理这种情况。

  • 4.拷贝内存空间中的数据到自己的缓冲区内,在完成对内存空间的检查后,使用 RtlCopyMemory 函数将目标进程的内存数据拷贝到自己的缓冲区中。这里需要注意的是,由于内存空间可能很大,因此可能需要多次进行拷贝操作。

  • 5.调用KeUnstackDetachProcess接触绑定,在读取完内存数据后,需要将当前线程从目标进程的上下文中解除绑定,以便返回到原来的上下文中。这里调用 KeUnstackDetachProcess 函数完成解绑操作,同时恢复之前保存的当前进程的上下文状态。

  • 6.调用ObDereferenceObject使对象引用数减1,由于在第一步中调用了 PsLookupProcessByProcessId 函数获取了对应进程的 PEPROCESS 结构,因此需要调用 ObDereferenceObject 函数将其引用计数减1,以便释放对该对象的引用。

有了上述具体实现方法,那么我们就可以封装MDLReadMemory()内存读函数了,代码如下,该函数用于在 Windows 内核模式下读取指定进程的内存数据。下面是对这个函数的详细步骤分析:

  • 1.通过进程 ID 找到对应的进程对象:PsLookupProcessByProcessId 用于通过进程 ID 查找对应的进程对象。如果找不到该进程对象,则直接返回 FALSE。
PsLookupProcessByProcessId(data->pid, &process);
  • 2.在内核模式下,必须使用内核提供的函数来分配内存。这里使用的是 ExAllocatePool 函数,用于在内核堆中分配指定大小的内存缓冲区。如果分配失败,则返回 FALSE。
BYTE* GetData;
__try
{GetData = ExAllocatePool(PagedPool, data->size);
}
__except (1)
{return FALSE;
}
  • 3.在内核模式下,访问其他进程的内存必须先将当前进程的上下文切换到目标进程的上下文。这里使用的是 KeStackAttachProcess 函数,将当前进程的上下文切换到目标进程的上下文。同时,为了在后面可以正确地从目标进程的上下文中返回,还需要保存当前进程的上下文状态。
KAPC_STATE stack = { 0 };
KeStackAttachProcess(process, &stack);
  • 4.读取目标进程的内存数据,这段代码使用 ProbeForRead 函数检查要读取的内存区域是否合法,并且将目标进程的内存数据读取到之前分配的内存缓冲区中。如果读取过程中出现异常,则返回 FALSE。
__try
{ProbeForRead(data->address, data->size, 1);RtlCopyMemory(GetData, data->address, data->size);
}
__except (1)
{bRet = FALSE;
}
  • 5.恢复当前进程的上下文,这里使用的是 ObDereferenceObject 函数和 KeUnstackDetachProcess 函数,用于恢复之前保存的当前进程的上下文状态,同时解除对目标进程的引用计数。
ObDereferenceObject(process);
KeUnstackDetachProcess(&stack);
  • 6.将读取的数据拷贝到输出参数中,将读取到的数据拷贝到输出参数中,并释放之前分配的内存缓冲区。
RtlCopyMemory(data->data, GetData, data->size);

将如上代码片段整合起来即可得到一个完整的内存读数据案例,读者可传入一个结构体实现对特定进程特定内存的动态读取功能,完整代码如下所示;

#include <ntifs.h>
#include <windef.h>typedef struct
{DWORD pid;                // 要读写的进程IDDWORD64 address;          // 要读写的地址DWORD size;               // 读写长度BYTE* data;               // 要读写的数据
}ReadMemoryStruct;// MDL读内存
BOOL MDLReadMemory(ReadMemoryStruct* data)
{BOOL bRet = TRUE;PEPROCESS process = NULL;PsLookupProcessByProcessId(data->pid, &process);if (process == NULL){return FALSE;}BYTE* GetData;__try{GetData = ExAllocatePool(PagedPool, data->size);}__except (1){return FALSE;}KAPC_STATE stack = { 0 };KeStackAttachProcess(process, &stack);__try{ProbeForRead(data->address, data->size, 1);RtlCopyMemory(GetData, data->address, data->size);}__except (1){bRet = FALSE;}ObDereferenceObject(process);KeUnstackDetachProcess(&stack);RtlCopyMemory(data->data, GetData, data->size);ExFreePool(GetData);return bRet;
}VOID UnDriver(PDRIVER_OBJECT driver)
{DbgPrint(("Uninstall Driver Is OK \n"));
}NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{DbgPrint(("hello lyshark \n"));ReadMemoryStruct ptr;ptr.pid = 6672;ptr.address = 0x402c00;ptr.size = 100;// 分配空间接收数据ptr.data = ExAllocatePool(PagedPool, ptr.size);// 读内存MDLReadMemory(&ptr);// 输出数据for (size_t i = 0; i < 100; i++){DbgPrint("%x \n", ptr.data[i]);}Driver->DriverUnload = UnDriver;return STATUS_SUCCESS;
}

读取内存地址0x402c00效果如下所示:

3.1.2 MDL写入内存步骤
  • 1.首先需要通过调用PsLookupProcessByProcessId函数获取目标进程的进程结构,该函数将根据传递的进程ID返回对应进程的PEPROCESS结构体,该结构体中包含了进程的各种信息。

  • 2.接下来使用KeStackAttachProcess函数附加到目标进程的上下文环境中,以便可以读取和写入该进程的内存空间。该函数将当前线程的上下文环境切换到目标进程的上下文环境中,使得该线程可以访问和修改目标进程的内存。

  • 3.在进行内存写入操作之前,需要调用ProbeForRead函数来检查要写入的内存空间是否可读写。这个步骤是为了确保要写入的内存空间没有被保护或被其他进程占用,以避免对系统造成不良影响。

  • 4.如果检查通过,接下来需要将目标进程的内存空间中的数据拷贝到当前进程的缓冲区中,以便进行修改操作。

  • 5.接下来需要调用MmMapLockedPages函数来锁定当前内存页面,以便可以对其进行修改。该函数将返回一个指向系统虚拟地址的指针,该地址是由系统自动分配的。在写入完成后,需要使用MmUnmapLockedPages函数来释放锁定的内存页面。

  • 6.然后,使用RtlCopyMemory函数完成内存拷贝操作,将缓冲区中的数据写入到锁定的内存页面中。

  • 7.写入操作完成后,需要调用IoFreeMdl函数来释放MDL锁。MDL锁用于锁定MDL描述的内存页面,以便可以对其进行操作。

  • 8.最后使用KeUnstackDetachProcess函数解除当前进程与目标进程之间的绑定,使得当前线程的上下文环境恢复到原始的状态。

此外在完成MDL写入内存操作后,还需要调用ObDereferenceObject函数将MDL对象的引用计数减1,以便在不再需要该对象时释放它所占用的系统资源。

从如上分析来看写入时与读取基本类似,只是多了锁定页面和解锁操作,这段MDL写内存完整实现代码如下所示;

#include <ntifs.h>
#include <windef.h>typedef struct
{DWORD pid;                // 要读写的进程IDDWORD64 address;          // 要读写的地址DWORD size;               // 读写长度BYTE* data;               // 要读写的数据
}WriteMemoryStruct;// MDL写内存
BOOL MDLWriteMemory(WriteMemoryStruct* data)
{BOOL bRet = TRUE;PEPROCESS process = NULL;PsLookupProcessByProcessId(data->pid, &process);if (process == NULL){return FALSE;}BYTE* GetData;__try{GetData = ExAllocatePool(PagedPool, data->size);}__except (1){return FALSE;}for (int i = 0; i < data->size; i++){GetData[i] = data->data[i];}KAPC_STATE stack = { 0 };KeStackAttachProcess(process, &stack);PMDL mdl = IoAllocateMdl(data->address, data->size, 0, 0, NULL);if (mdl == NULL){return FALSE;}MmBuildMdlForNonPagedPool(mdl);BYTE* ChangeData = NULL;__try{ChangeData = MmMapLockedPages(mdl, KernelMode);RtlCopyMemory(ChangeData, GetData, data->size);}__except (1){bRet = FALSE;goto END;}END:IoFreeMdl(mdl);ExFreePool(GetData);KeUnstackDetachProcess(&stack);ObDereferenceObject(process);return bRet;
}VOID UnDriver(PDRIVER_OBJECT driver)
{DbgPrint(("Uninstall Driver Is OK \n"));
}NTSTATUS DriverEntry(IN PDRIVER_OBJECT Driver, PUNICODE_STRING RegistryPath)
{DbgPrint(("hello lyshark \n"));WriteMemoryStruct ptr;ptr.pid = 6672;ptr.address = 0x402c00;ptr.size = 5;// 需要写入的数据ptr.data = ExAllocatePool(PagedPool, ptr.size);// 循环设置for (size_t i = 0; i < 5; i++){ptr.data[i] = 0x90;}// 写内存MDLWriteMemory(&ptr);Driver->DriverUnload = UnDriver;return STATUS_SUCCESS;
}

写出效果如下:

相关文章:

3.3 Windows驱动开发:内核MDL读写进程内存

MDL内存读写是一种通过创建MDL结构体来实现跨进程内存读写的方式。在Windows操作系统中&#xff0c;每个进程都有自己独立的虚拟地址空间&#xff0c;不同进程之间的内存空间是隔离的。因此&#xff0c;要在一个进程中读取或写入另一个进程的内存数据&#xff0c;需要先将目标进…...

开源与闭源:驾驭大模型未来的关键决断

在数字化的时代洪流中&#xff0c;开源与闭源的选择不断成为技术界的重要分水岭。随着特斯拉CEO埃隆马斯克的言论及其决策&#xff0c;公开支持开源&#xff0c;并糅合商业理念与技术革新&#xff0c;使得这场辩论再次成为公众关注的焦点。那么&#xff0c;在这场关乎技术发展脉…...

面向对象成员之属性

属性:通过方法改造出来 # 1.编写时 # 方法上方写property # 方法参数:只有一个self # 2.使用时:无需加括号 对象.方法 # 3.应用场景:对于简单的方法,当无需传参且有返回值时,可以使用 property class Foo(object):def _init_(self):...propertydef start(self):return 1pr…...

第六十二周周报

学习目标&#xff1a; 一、实验 二、论文 学习时间&#xff1a; 2023.11.11-2023.11.17 学习产出&#xff1a; 实验 1、CB模块实验效果出来了&#xff0c;加上去效果不太行&#xff0c;后续实验考虑是否将CB模块换到其他地方 2、CiFAR100实验已完成&#xff0c;效果比Vi…...

【机器学习】 特征工程:特征预处理,归一化、标准化、处理缺失值

特征预处理采用的是特定的统计方法&#xff08;数学方法&#xff09;将数据转化为算法要求的数字 1. 数值型数据 归一化&#xff0c;将原始数据变换到[0,1]之间 标准化&#xff0c;数据转化到均值为0&#xff0c;方差为1的范围内 缺失值&#xff0c;缺失值处理成均值、中…...

【深度学习实验】网络优化与正则化(七):超参数优化方法——网格搜索、随机搜索、贝叶斯优化、动态资源分配、神经架构搜索

文章目录 一、实验介绍二、实验环境1. 配置虚拟环境2. 库版本介绍 三、优化算法0. 导入必要的库1. 随机梯度下降SGD算法a. PyTorch中的SGD优化器b. 使用SGD优化器的前馈神经网络 2.随机梯度下降的改进方法a. 学习率调整b. 梯度估计修正 3. 梯度估计修正&#xff1a;动量法Momen…...

简单漂亮的首页

效果图 说明 这个首页我也是构思了很久&#xff0c;才想出这个界面&#xff0c;大家喜欢的话&#xff0c;可以拿走去使用 技术的话&#xff0c;采用的就是vue的语法&#xff0c;但是不影响&#xff0c;很多样式我都是直接手敲出来的 代码实现 标语 <!-- 标语 start-->&…...

SSM项目初始化流程与操作概念解释-SpringBoot简化版

文章目录 1.引入概念2.导入依赖3.项目配置4.依照SpringMVC框架构建项目 1.引入概念 例如某一个XX系统&#xff0c;该系统存在前台页面&#xff08;给用户直观看或使用&#xff09;&#xff0c;和后台页面&#xff08;给管理人员调整数据和权限&#xff09;。 这二个页面都通过…...

Angular 路由无缝导航的实现与应用(六)

Angular 是一种流行的前端开发框架&#xff0c;它提供了强大的路由功能&#xff0c;用于构建单页应用程序&#xff08;SPA&#xff09;。本文将介绍 Angular 路由的基本概念和使用方法&#xff0c;并通过具体的代码实例演示如何利用路由实现无缝的页面导航。 什么是 Angular 路…...

quickapp_快应用_tabBar

tabBar 配置项中配置tabBar(版本兼容)使用tabs组件配置tabBar语法示例问题-切换tab没有反应问题-数据渲染问题解决优化 问题-tab的动态配置 第三方组件tabbar 一般首页都会显示几个tab用于进行页面切换&#xff0c;以下是几种tab配置方式。 配置项中配置tabBar(版本兼容) 在m…...

PCL_点云分割_基于法线微分分割

一、概述 PCL_点云分割_基于法线微分分割_点云法向量微分-CSDN博客 利用不同的半径&#xff08;大的半径、小半径&#xff09;来计算同一个点的法向量差值P。判断P的范围&#xff0c;从而进行分割。 看图理解&#xff1a; 二、计算流程 1、计算P点小半径的法向量Ns 2、计…...

计算机毕业论文内容参考|基于深度学习的交通标识智能识别系统的设计与维护

文章目录 导文摘要前言绪论1课题背景2国内外现状与趋势3课题内容相关技术与方法介绍系统分析总结与展望导文 基于深度学习的交通标识智能识别系统是一种利用深度学习模型对交通标识进行识别和解析的系统。它可以帮助驾驶员更好地理解交通规则和安全提示,同时也可以提高道路交通…...

SELinux零知识学习十六、SELinux策略语言之类型强制(1)

接前一篇文章&#xff1a;SELinux零知识学习十五、SELinux策略语言之客体类别和许可&#xff08;9&#xff09; 二、SELinux策略语言之类型强制 SELinux策略大部分内容都是由多条类型强制规则构成的&#xff0c;这些规则控制被允许的使用权&#xff0c;大多数默认转换标志、审…...

轻量封装WebGPU渲染系统示例<34>-数据驱动之Json构建场景

场景和数据之间的互通&#xff1a; 场景数据化或者数据化场景&#xff0c;是当前的主流场景数据构成方式。方便传输方便交换甚至是交互。 内置数据互通机制更有利于用户在各种应用场合下实现具体的3D相关的应用需求。用户只需要关心标准的或者约定好的数据定义及操作方式就能方…...

全局异常拦截和Spring Security认证异常的拦截的顺序

&#x1f4d1;前言 本文主要全局异常拦截和Spring Security认证异常的顺序&#xff0c;如果有什么需要改进的地方还请大佬指出⛺️ &#x1f3ac;作者简介&#xff1a;大家好&#xff0c;我是青衿&#x1f947; ☁️博客首页&#xff1a;CSDN主页放风讲故事 &#x1f304;每日…...

Hive Lateral View explode列为空时导致数据异常丢失

一、问题描述 日常工作中我们经常会遇到一些非结构化数据&#xff0c;因此常常会将Lateral View 结合explode使用&#xff0c;达到将非结构化数据转化成结构化数据的目的&#xff0c;但是该方法对应explode的内容是有非null限制的&#xff0c;否则就有可能造成数据缺失。 SE…...

音频类型转换工具-可执行文件exe/dmg制作

朋友车载音乐需要MP3格式&#xff0c;想要个批量转换工具 准备工作 brew install ffmpeg --HEAD或者官网下载安装ffmpeg并配置环境conda install ffmpeg 或者pip install ffmpeg-python 音频类型转换程序.py文件 exe文件在windows下打包&#xff0c;dmg在macos下打包&#…...

【Proteus仿真】【51单片机】公交车报站系统

文章目录 一、功能简介二、软件设计三、实验现象联系作者 一、功能简介 本项目使用Proteus8仿真51单片机控制器&#xff0c;使用LCD12864显示模块、DS18B20温度传感器、DS1302时钟模块、按键、LED蜂鸣器、ULN2003、28BYJ48步进电机模块等。 主要功能&#xff1a; 系统运行后&…...

C++--STL总结

参考教程&#xff1a;黑马程序员匠心之作|C教程从0到1入门编程,学习编程不再难_哔哩哔哩_bilibili 软件界一直希望建立一种可重复利用的东西&#xff0c;C的面向对象和泛型编程思想&#xff0c;目的就是复用性的提升。 大多情况下&#xff0c;数据结构和算法都未能有一套标准,…...

Python----图像的手绘效果

图像的数组表示 图像是有规则的二维数据&#xff0c;可以用numpy 库将图像转换成数组对象 : from PIL import Image import numpy as np imnp.array(Image.open("D://np.jpg")) print(im.shape,im.dtype)结果&#xff1a; 图像转换对应的ndarray 类型是3 维数据&am…...

KubeSphere 容器平台高可用:环境搭建与可视化操作指南

Linux_k8s篇 欢迎来到Linux的世界&#xff0c;看笔记好好学多敲多打&#xff0c;每个人都是大神&#xff01; 题目&#xff1a;KubeSphere 容器平台高可用&#xff1a;环境搭建与可视化操作指南 版本号: 1.0,0 作者: 老王要学习 日期: 2025.06.05 适用环境: Ubuntu22 文档说…...

Cursor实现用excel数据填充word模版的方法

cursor主页&#xff1a;https://www.cursor.com/ 任务目标&#xff1a;把excel格式的数据里的单元格&#xff0c;按照某一个固定模版填充到word中 文章目录 注意事项逐步生成程序1. 确定格式2. 调试程序 注意事项 直接给一个excel文件和最终呈现的word文件的示例&#xff0c;…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

【Go语言基础【13】】函数、闭包、方法

文章目录 零、概述一、函数基础1、函数基础概念2、参数传递机制3、返回值特性3.1. 多返回值3.2. 命名返回值3.3. 错误处理 二、函数类型与高阶函数1. 函数类型定义2. 高阶函数&#xff08;函数作为参数、返回值&#xff09; 三、匿名函数与闭包1. 匿名函数&#xff08;Lambda函…...

安全突围:重塑内生安全体系:齐向东在2025年BCS大会的演讲

文章目录 前言第一部分&#xff1a;体系力量是突围之钥第一重困境是体系思想落地不畅。第二重困境是大小体系融合瓶颈。第三重困境是“小体系”运营梗阻。 第二部分&#xff1a;体系矛盾是突围之障一是数据孤岛的障碍。二是投入不足的障碍。三是新旧兼容难的障碍。 第三部分&am…...

招商蛇口 | 执笔CID,启幕低密生活新境

作为中国城市生长的力量&#xff0c;招商蛇口以“美好生活承载者”为使命&#xff0c;深耕全球111座城市&#xff0c;以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子&#xff0c;招商蛇口始终与城市发展同频共振&#xff0c;以建筑诠释对土地与生活的…...

免费PDF转图片工具

免费PDF转图片工具 一款简单易用的PDF转图片工具&#xff0c;可以将PDF文件快速转换为高质量PNG图片。无需安装复杂的软件&#xff0c;也不需要在线上传文件&#xff0c;保护您的隐私。 工具截图 主要特点 &#x1f680; 快速转换&#xff1a;本地转换&#xff0c;无需等待上…...

PHP 8.5 即将发布:管道操作符、强力调试

前不久&#xff0c;PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5&#xff01;作为 PHP 语言的又一次重要迭代&#xff0c;PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是&#xff0c;借助强大的本地开发环境 ServBay&am…...

CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!

本文介绍了一种名为AnomalyAny的创新框架&#xff0c;该方法利用Stable Diffusion的强大生成能力&#xff0c;仅需单个正常样本和文本描述&#xff0c;即可生成逼真且多样化的异常样本&#xff0c;有效解决了视觉异常检测中异常样本稀缺的难题&#xff0c;为工业质检、医疗影像…...

认识CMake并使用CMake构建自己的第一个项目

1.CMake的作用和优势 跨平台支持&#xff1a;CMake支持多种操作系统和编译器&#xff0c;使用同一份构建配置可以在不同的环境中使用 简化配置&#xff1a;通过CMakeLists.txt文件&#xff0c;用户可以定义项目结构、依赖项、编译选项等&#xff0c;无需手动编写复杂的构建脚本…...