当前位置: 首页 > news >正文

LeetCode算法题解(动态规划)|LeetCode509. 斐波那契数、LeetCode70. 爬楼梯、LeetCode746. 使用最小花费爬楼梯

一、LeetCode509. 斐波那契数

题目链接:509. 斐波那契数
题目描述:

斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是:

F(0) = 0,F(1) = 1
F(n) = F(n - 1) + F(n - 2),其中 n > 1

给定 n ,请计算 F(n) 。

示例 1:

输入:n = 2
输出:1
解释:F(2) = F(1) + F(0) = 1 + 0 = 1

示例 2:

输入:n = 3
输出:2
解释:F(3) = F(2) + F(1) = 1 + 1 = 2

示例 3:

输入:n = 4
输出:3
解释:F(4) = F(3) + F(2) = 2 + 1 = 3

提示:

  • 0 <= n <= 30
算法分析:

根据动规五部曲来就可以了。

这道题题目已经给了我们地推的公式F[n]=F[n-1]+F[n-2],以及其初始值F[0]=1,F[1]=1,所以我们只需要明白F[n]及其下标的含义就可以了。

显然F[n]表示数列中第n项数的值。

然后我们来遍历整个数组,按照递推公式依次确定每个项的值。

最后返回第n项F[n]即可。

如果算出来的结果有问题,可以把数组打印出来,检查递推是否有问题。

代码如下:

class Solution {public int fib(int n) {if(n <= 1) return n;int[] dp = new int[n + 1];dp[0] = 0;dp[1] = 1;for(int i = 2; i <= n; i++)dp[i] = dp[i - 1] + dp[i - 2];return dp[n];}
}

时间复杂度o(n)空间复杂度o(n).

二、LeetCode70. 爬楼梯

题目链接:70. 爬楼梯
题目描述:

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

示例 1:

输入:n = 2
输出:2
解释:有两种方法可以爬到楼顶。
1. 1 阶 + 1 阶
2. 2 阶

示例 2:

输入:n = 3
输出:3
解释:有三种方法可以爬到楼顶。
1. 1 阶 + 1 阶 + 1 阶
2. 1 阶 + 2 阶
3. 2 阶 + 1 阶

提示:

  • 1 <= n <= 45
算法分析:
确定dp数组及下标含义:

用dp[i]表示爬到第i阶楼梯可以有多少种方法。

递推公式:

第i阶楼梯可以由i-1阶楼梯跳一步上来,也可以由i-2阶楼梯跳两步上来。

所以到达第i阶楼梯可以有dp[i-1]+dp[i-2]种方法,即dp[i] = dp[i-1]+dp[i-2]。

初始化:

爬上第一阶楼梯有一种方法,即从第0阶向上爬一步,所以dp[1]=1;

爬上第二阶楼梯有两种方法,从第0阶向上一次性爬两步到第二阶,或者向上爬两次,一次爬一步到第二阶,所以dp[2]=2。

遍历顺序:

从前往后依次遍历并确定到达每阶楼梯所需要的方法。

如果结果有问题,打印dp数组,查看是否跟自己推导的一致。

代码如下:

class Solution {public int climbStairs(int n) {if(n <= 2) return n;int[] dp = new int[n + 1];dp[1] = 1;dp[2] = 2;for(int i = 3; i <= n; i++) dp[i] = dp[i - 1] + dp[i - 2];return dp[n];}
}

时间复杂度o(n),空间复杂度o(n).

三、LeetCode746. 使用最小花费爬楼梯

题目链接:746. 使用最小花费爬楼梯
题目描述:

给你一个整数数组 cost ,其中 cost[i] 是从楼梯第 i 个台阶向上爬需要支付的费用。一旦你支付此费用,即可选择向上爬一个或者两个台阶。

你可以选择从下标为 0 或下标为 1 的台阶开始爬楼梯。

请你计算并返回达到楼梯顶部的最低花费。

示例 1:

输入:cost = [10,15,20]
输出:15
解释:你将从下标为 1 的台阶开始。
- 支付 15 ,向上爬两个台阶,到达楼梯顶部。
总花费为 15 。

示例 2:

输入:cost = [1,100,1,1,1,100,1,1,100,1]
输出:6
解释:你将从下标为 0 的台阶开始。
- 支付 1 ,向上爬两个台阶,到达下标为 2 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 4 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 6 的台阶。
- 支付 1 ,向上爬一个台阶,到达下标为 7 的台阶。
- 支付 1 ,向上爬两个台阶,到达下标为 9 的台阶。
- 支付 1 ,向上爬一个台阶,到达楼梯顶部。
总花费为 6 。

提示:

  • 2 <= cost.length <= 1000
  • 0 <= cost[i] <= 999
算法分析:
确定dp数组及下标含义:

dp[i]表示到达第i阶楼梯所需花费的最小费用。

递推公式:

到第i阶可以从i-1阶跳一步上来,所需花费为dp[i-1]+cost[i-1],也可以从i-2阶跳两步上来,所需花费为dp[i-2]+cost[i-2],所以到达第i阶所需要的最小花费为dp[i]=min(dp[i-1]+cost[i-1],dp[i-2]+cost[i-2])。

初始化:

题目给出的条件,我们可以从第0阶或第1阶楼梯开始爬楼梯。

所以爬上第0阶楼梯所需的最小花费dp[0]=0,爬上第1阶所需的最小花费dp[1]=0;

遍历顺序:

从前往后依次遍历并确定到达每阶楼梯所需的最小花费。

如果有问题打印dp数组验证。

代码如下:

class Solution {public int minCostClimbingStairs(int[] cost) {int len = cost.length;int[] dp = new int[len + 1];dp[0] = 0;dp[1] = 0;for(int i = 2; i <= len; i++)dp[i] = Math.min(dp[i - 1] + cost[i - 1], dp[i - 2] + cost[i - 2]);return dp[len];}
}

时间复杂度o(n),空间复杂度o(n).

总结

解决了这三道题,动态规划算是入门了,这三道题只要按照动规五部曲来还是比较简单的。

动规五部曲:

1,确定dp数组及下标的含义。

2,确定递归公式。

3,初始化。

4,确定遍历顺序。

5,打印dp数组验证结果。

相关文章:

LeetCode算法题解(动态规划)|LeetCode509. 斐波那契数、LeetCode70. 爬楼梯、LeetCode746. 使用最小花费爬楼梯

一、LeetCode509. 斐波那契数 题目链接&#xff1a;509. 斐波那契数 题目描述&#xff1a; 斐波那契数 &#xff08;通常用 F(n) 表示&#xff09;形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始&#xff0c;后面的每一项数字都是前面两项数字的和。也就是&#xff1a…...

【图像处理】:Otsu算法最大类间方差法(大津算法:附源码)

这里写自定义目录标题 数学原理算法评价参考链接 数学原理 以灰度图像为例&#xff0c;对于图像MN大小的矩阵&#xff0c;即图像中的像素&#xff0c;每一个值即为像素值&#xff0c;其中灰度图像像素值在(0~255)之间。 主要实现前景(即目标)和背景的分割&#xff1a; 主要公式…...

【uni-app】设置背景颜色相关

1. 全局页面背景色设置&#xff1a; 在App.vue的style样式表中设置 <style> page {background-color: #F0AD4E; } </style> 2. 顶部导航栏背景色设置&#xff1a; 在pages.json页面路由中&#xff0c;globalStyle设置 "globalStyle": {"navi…...

工厂模式-C++实现

工厂模式是一个创建型设计模式&#xff0c;即“对象创建模式”&#xff0c;通过这种模式可以绕开new&#xff0c;来避免对象创建过程中&#xff0c;也就是new的方法造成的紧耦合&#xff0c;从而支持对象创建的稳定。 工厂模式中引入了一个工厂类&#xff0c;该工厂负责根据客…...

安装应用与免安装应用差异对比

差异 安装的程序和免安装的应用程序之间有以下几个方面的差别&#xff1a; 安装过程&#xff1a;安装的程序需要通过一个安装程序或安装脚本进行安装。这个过程通常会将应用程序的文件和依赖项复制到指定的目录&#xff0c;并进行一些配置和注册操作。免安装的应用程序则不需要…...

FiscoBcos使用Go调用合约

环境&#xff1a; fisco2.8.0 go 1.17 go-sdk 1.0.0 solidity 0.4.25 前言 请提前启动好四个fisco节点。 请准备好一个属于此fisco节点的账户私钥【待会调用合约和部署合约会用到】 此文章将讲解 官方文档使用gosdk部署helloworld合约并调用其方法 合约开发样例 官网提示 G…...

自然语言处理(NLP)-spacy简介以及安装指南(语言库zh_core_web_sm)

spacy 简介 spacy 是 Python 自然语言处理软件包&#xff0c;可以对自然语言文本做词性分析、命名实体识别、依赖关系刻画&#xff0c;以及词嵌入向量的计算和可视化等。 1.安装 spacy 使用 “pip install spacy" 报错&#xff0c; 或者安装完 spacy&#xff0c;无法正…...

CTF-PWN-tips

文章目录 overflowscanfgetreadstrcpystrcat Find string in gdbgdbgdb peda Binary ServiceFind specific function offset in libc手工自动 Find /bin/sh or sh in library手动自动 Leak stack addressFork problem in gdbSecret of a mysterious section - .tlsPredictable …...

《Effective C++》条款21

必须返回对象时&#xff0c;别妄想返回其reference 如果你的运算符重载函数写成了返回reference的形式&#xff1a; class A { public:A(int a,int b):x(a),y(b){}friend const A& operator*(const A& a, const A& b); private:int x;int y; }; const A& opera…...

决策树,sql考题,30个经典sql题目

大数据&#xff1a; 2022找工作是学历、能力和运气的超强结合体&#xff0c;遇到寒冬&#xff0c;大厂不招人&#xff0c;可能很多算法学生都得去找开发&#xff0c;测开 测开的话&#xff0c;你就得学数据库&#xff0c;sql&#xff0c;oracle&#xff0c;尤其sql要学&#x…...

【ES6.0】- 扩展运算符(...)

【ES6.0】- 扩展运算符... 文章目录 【ES6.0】- 扩展运算符...一、概述二、拷贝数组对象三、合并操作四、参数传递五、数组去重六、字符串转字符数组七、NodeList转数组八、解构变量九、打印日志十、总结 一、概述 **扩展运算符(...)**允许一个表达式在期望多个参数&#xff0…...

关于Java中的深拷贝与浅拷贝

Java中的深拷贝和浅拷贝是针对对象和数组等引用数据类型的复制操作。 浅拷贝&#xff08;Shallow Copy&#xff09;&#xff1a; 对于基本数据类型&#xff0c;浅拷贝直接复制其值。对于引用数据类型&#xff0c;浅拷贝只复制对原对象的引用&#xff0c;而不是复制对象本身。因…...

13.真刀实枪做项目---博客系统(页面设计)

文章目录 1.预期效果1.1博客列表页效果1.2博客详情页效果1.3博客登陆页效果1.4博客编辑页效果 2.实现博客列表页2.1实现导航栏2.2实现版心2.3实现个人信息2.4实现博客列表2.5博客列表页完整代码 3.实现博客正文页3.1引入导航栏3.2引入版心3.3引入个人信息3.4实现博客正文3.5博客…...

VScode 配置用户片段

文件->首选项->配置用户片段->新建全局用户片段 后续就可以通过vv3来直接生成下面的代码 {// Place your 全局 snippets here. Each snippet is defined under a snippet name and has a scope, prefix, body and // description. Add comma separated ids of the l…...

Fedora 项目近日发布了 Fedora Linux 39

导读几经推迟之后&#xff0c;Fedora 项目近日发布了 Fedora Linux 39&#xff0c;这是红帽公司赞助的面向大众的 GNU/Linux 发行版的最新稳定版本&#xff0c;采用了最新的技术和开源应用程序。 Fedora Linux 39 由 Linux 内核 6.5 支持&#xff0c;并提供了一些最新的桌面环境…...

Uniapp连接iBeacon设备——实现无线定位与互动体验(理论篇)

目录 前言&#xff1a; 一、什么是iBeacon技术 二、Uniapp连接iBeacon设备的准备工作 硬件设备&#xff1a; 三、Uniapp连接iBeacon设备的实现步骤 创建Uniapp项目&#xff1a; 四、Uniapp连接iBeacon设备的应用场景 室内导航&#xff1a; 五、Uniapp连接iBeacon设备的未来…...

GCD:异步同步?串行并发?一文轻松拿捏!

GCD 文章目录 GCD进程线程进程与线程的关系进程与线程的区别 任务&#xff08;执行的代码&#xff09;队列线程与队列的关系 队列任务**同步执行任务&#xff08;sync&#xff09;**辅助方法**异步执行任务&#xff08;async)**总结栅栏任务迭代任务 队列详细属性QoSAttributes…...

学习c#的第十七天

目录 C# 异常处理 异常的原因 System.Exception 类 如何处理异常 常见的异常类 throw 语句 throw 表达式 try 语句 try-catch 语句 try-finally 语句 try-catch-finally 语句 when 异常筛选器 异步和迭代器方法中的异常 C# 异常处理 C # 中的异常提供了结构化、统…...

龙芯 操作系统选择和安装

龙芯3a5000及之后的cpu底层架构已经从mips64el改为了loongarch64 所以这里分了2种来说明&#xff0c;分别对应3a4000之前的和3a5000之后的 龙芯的系统安装难点在于操作系统的选取和引导 一、烧录工具 制作安装盘使用常规的烧录工具是不行滴&#xff0c;会提示没有\boot\initrd…...

【开源】基于JAVA的智能停车场管理系统

项目编号&#xff1a; S 005 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S005&#xff0c;文末获取源码。} 项目编号&#xff1a;S005&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、研究内容A. 车主端功能B. 停车工作人员功能C. 系…...

跨链模式:多链互操作架构与性能扩展方案

跨链模式&#xff1a;多链互操作架构与性能扩展方案 ——构建下一代区块链互联网的技术基石 一、跨链架构的核心范式演进 1. 分层协议栈&#xff1a;模块化解耦设计 现代跨链系统采用分层协议栈实现灵活扩展&#xff08;H2Cross架构&#xff09;&#xff1a; 适配层&#xf…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

【HTTP三个基础问题】

面试官您好&#xff01;HTTP是超文本传输协议&#xff0c;是互联网上客户端和服务器之间传输超文本数据&#xff08;比如文字、图片、音频、视频等&#xff09;的核心协议&#xff0c;当前互联网应用最广泛的版本是HTTP1.1&#xff0c;它基于经典的C/S模型&#xff0c;也就是客…...

Xen Server服务器释放磁盘空间

disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...

排序算法总结(C++)

目录 一、稳定性二、排序算法选择、冒泡、插入排序归并排序随机快速排序堆排序基数排序计数排序 三、总结 一、稳定性 排序算法的稳定性是指&#xff1a;同样大小的样本 **&#xff08;同样大小的数据&#xff09;**在排序之后不会改变原始的相对次序。 稳定性对基础类型对象…...

BLEU评分:机器翻译质量评估的黄金标准

BLEU评分&#xff1a;机器翻译质量评估的黄金标准 1. 引言 在自然语言处理(NLP)领域&#xff0c;衡量一个机器翻译模型的性能至关重要。BLEU (Bilingual Evaluation Understudy) 作为一种自动化评估指标&#xff0c;自2002年由IBM的Kishore Papineni等人提出以来&#xff0c;…...

Python学习(8) ----- Python的类与对象

Python 中的类&#xff08;Class&#xff09;与对象&#xff08;Object&#xff09;是面向对象编程&#xff08;OOP&#xff09;的核心。我们可以通过“类是模板&#xff0c;对象是实例”来理解它们的关系。 &#x1f9f1; 一句话理解&#xff1a; 类就像“图纸”&#xff0c;对…...

向量几何的二元性:叉乘模长与内积投影的深层联系

在数学与物理的空间世界中&#xff0c;向量运算构成了理解几何结构的基石。叉乘&#xff08;外积&#xff09;与点积&#xff08;内积&#xff09;作为向量代数的两大支柱&#xff0c;表面上呈现出截然不同的几何意义与代数形式&#xff0c;却在深层次上揭示了向量间相互作用的…...

LTR-381RGB-01RGB+环境光检测应用场景及客户类型主要有哪些?

RGB环境光检测 功能&#xff0c;在应用场景及客户类型&#xff1a; 1. 可应用的儿童玩具类型 (1) 智能互动玩具 功能&#xff1a;通过检测环境光或物体颜色触发互动&#xff08;如颜色识别积木、光感音乐盒&#xff09;。 客户参考&#xff1a; LEGO&#xff08;乐高&#x…...

无头浏览器技术:Python爬虫如何精准模拟搜索点击

1. 无头浏览器技术概述 1.1 什么是无头浏览器&#xff1f; 无头浏览器是一种没有图形用户界面&#xff08;GUI&#xff09;的浏览器&#xff0c;它通过程序控制浏览器内核&#xff08;如Chromium、Firefox&#xff09;执行页面加载、JavaScript渲染、表单提交等操作。由于不渲…...