当前位置: 首页 > news >正文

R语言的入门学习

目录

  • 准备工作
  • 导入csv数据集
    • 选择前200行作为数据集
    • 展示数据集的前/后几N行
    • 宏观分析
    • 删除缺失值
    • 构建直方图
    • 导出为图片
  • R语言常见图像类型
    • 例1:散点图
    • 例2:散点矩阵图

准备工作

  • 安装教程: R语言和RStudio的下载安装(非常简便舒适)

导入csv数据集

  • 右上角导入数据集。
    在这里插入图片描述

在这里插入图片描述

选择前200行作为数据集

data <- BOOK_TEST[1:200,c(1,2,3)]

展示数据集的前/后几N行

head(data)
tail(data,10)

在这里插入图片描述

宏观分析

summary(data)

在这里插入图片描述

删除缺失值

  • 这个测试数据集中并没有缺失值。
data = na.omit(data)

构建直方图

  • 第三列数据是对书籍的打分。
hist(data$V3)

在这里插入图片描述

导出为图片

在这里插入图片描述

R语言常见图像类型

  • 散点图(Scatter plot)、折线图(Line plot)、条形图(Bar plot)、直方图(Histogram)、箱线图(Box plot)、饼图(Pie chart)、热力图(Heatmap)、散点矩阵图(Scatterplot matrix)

例1:散点图

# 创建示例数据
x <- c(1, 2, 3, 4, 5)
y <- c(2, 4, 6, 8, 10)# 创建散点图
plot(x, y, main = "Scatter Plot", xlab = "X", ylab = "Y", pch = 16, col = "blue")

在这里插入图片描述

例2:散点矩阵图

  • 散点矩阵图(Scatterplot Matrix)是一种用于可视化多个变量之间关系的图表。它展示了数据集中多个变量两两之间的散点图,每个格子代表了两个变量之间的关系。散点矩阵图可以帮助我们观察和理解变量之间的相关性、分布情况以及可能存在的模式。
  • 散点矩阵图的主要作用和使用场景如下:
    • 变量关系探索:散点矩阵图可以帮助我们直观地观察多个变量之间的关系,特别是在变量较多时。通过观察散点图的分布和趋势,我们可以发现变量之间的线性或非线性关系,以及可能存在的异常值或离群点。
    • 相关性分析:散点矩阵图可以帮助我们评估变量之间的相关性。通过观察散点图中点的分布情况,我们可以判断变量之间的相关性强弱、正负相关以及可能存在的非线性关系。
    • 变量选择:散点矩阵图可以帮助我们在多个变量中选择与目标变量相关性较高的变量。通过观察散点图中与目标变量相关性较强的变量,我们可以选择最具有预测能力的变量进行进一步分析。
    • 数据预处理:散点矩阵图可以帮助我们发现数据中的异常值、缺失值或其他数据质量问题。通过观察散点图中的异常点或缺失值模式,我们可以进行相应的数据清洗和预处理操作。

总之,散点矩阵图是一种强大的数据可视化工具,适用于探索性数据分析、相关性分析和变量选择等场景。它可以帮助我们更好地理解数据集中多个变量之间的关系,从而支持数据分析和决策过程。

# 创建示例数据
data <- iris[, 1:4]# 创建散点矩阵图
pairs(data, main = "Scatterplot Matrix")

在这里插入图片描述

相关文章:

R语言的入门学习

目录 准备工作导入csv数据集选择前200行作为数据集展示数据集的前/后几N行宏观分析删除缺失值构建直方图导出为图片 R语言常见图像类型例1&#xff1a;散点图例2&#xff1a;散点矩阵图 准备工作 安装教程&#xff1a; R语言和RStudio的下载安装&#xff08;非常简便舒适&…...

【开源】基于Vue和SpringBoot的民宿预定管理系统

项目编号&#xff1a; S 058 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S058&#xff0c;文末获取源码。} 项目编号&#xff1a;S058&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用例设计2.2 功能设计2.2.1 租客角色…...

nacos集群部署

GitHub - nacos-group/nacos-k8s: This project contains a Nacos Docker image meant to facilitate the deployment of Nacos on Kubernetes using StatefulSets. 需要修改两个文件 --- apiVersion: v1 kind: Service metadata:name: nacos-headlessnamespace: project-guli…...

9、传统计算机视觉 —— 边缘检测

本节介绍一种利用传统计算机视觉方法来实现图片边缘检测的方法。 什么是边缘检测? 边缘检测是通过一些算法来识别图像中物体之间,或者物体与背景之间的边界,也就是边缘。 边缘通常是图像中灰度变化显著的地方,标志着不同区域的分界线。 在一张图像中,边缘可以是物体的…...

Linux tc 使用

tc模拟延时丢包等网络故障依赖的内核驱动 /lib/modules/5.15.0-52-generic/kernel/net/sched/sch_netem.ko有些系统并不是默认就安装上该驱动的&#xff0c;如果没有安装该驱动&#xff0c;构造网络故障时会报错。 root:curtis# tc qdisc change dev enp4s0 root netem delay…...

从0开始学习JavaScript--JavaScript 数字与日期

JavaScript中的数字和日期是处理数值计算和时间相关任务的核心。本文将深入研究JavaScript中数字的表示、常见运算&#xff0c;以及日期对象的创建、格式化等操作&#xff0c;并通过丰富的示例代码&#xff0c;可以更全面地了解和应用这些概念。 JavaScript数字基础 JavaScri…...

从关键新闻和最新技术看AI行业发展(2023.11.6-11.19第十期) |【WeThinkIn老实人报】

Rocky Ding 公众号&#xff1a;WeThinkIn 写在前面 【WeThinkIn老实人报】旨在整理&挖掘AI行业的关键新闻和最新技术&#xff0c;同时Rocky会对这些关键信息进行解读&#xff0c;力求让读者们能从容跟随AI科技潮流。也欢迎大家提出宝贵的优化建议&#xff0c;一起交流学习&…...

计算机硬件的基本组成

一、冯诺依曼结构 存储程序&#xff1a; “存储程序”的概念是指将指令以二进制代码的形式事先输入计算机的主存储器&#xff0c;然后按其在存储器中的首地址执行程序的第一条指令&#xff0c;以后就按该程序的规定顺序执行其他指令&#xff0c;直至程序执行结束。 冯诺依曼计…...

【算法-哈希表3】四数相加2 和 赎金信

今天&#xff0c;带来哈希表相关算法的讲解。文中不足错漏之处望请斧正&#xff01; 理论基础点这里 1. 四数相加2 分析题意 求符合条件的四元组的出现次数&#xff0c;条件&#xff1a; nums1nums2nums3nums4 从四个数组中的每一个数组取一个数 num1, num2, num3, num4&am…...

wpf devexpress自定义编辑器

打开前一个例子 步骤1-自定义FirstName和LastName编辑器字段 如果运行程序&#xff0c;会通知编辑器是空。对于例子&#xff0c;这两个未命名编辑器在第一个LayoutItem(Name)。和最终用户有一个访客左右编辑器查阅到First Name和Last Name字段&#xff0c;分别。如果你看到Go…...

文档向量化工具(一):Apache Tika介绍

Apache Tika是什么&#xff1f;能干什么&#xff1f; Apache Tika是一个内容分析工具包。 该工具包可以从一千多种不同的文件类型&#xff08;如PPT、XLS和PDF&#xff09;中检测并提取元数据和文本。 所有这些文件类型都可以通过同一个接口进行解析&#xff0c;这使得Tika在…...

学习c#的第二十一天

目录 C# 泛型&#xff08;Generic&#xff09; 泛型类型参数 类型参数的约束 约束多个参数 未绑定的类型参数 类型参数作为约束 notnull 约束 class 约束 default 约束 非托管约束 委托约束 枚举约束 类型参数实现声明的接口 泛型类 泛型方法 泛型和数组 泛型…...

Michael Jordan最新报告:去中心化机器学习中的契约、不确定性和激励

‍ ‍导读 11月3日&#xff0c;智源研究院学术顾问委员会委员、机器学习泰斗Michael Jordan在以“新一代人工智能前沿”为主题的2023北京论坛 新工科专题论坛上&#xff0c;发表了题为Contracts, Uncertainty, and Incentives in Decentralized Machine Learning&#xff08;去…...

3ds Max渲染用专业显卡还是游戏显卡?

使用3dsmax建模时&#xff0c;会面临诸多选择&#xff0c;除了用vr还是cr的决策&#xff0c;硬件选择上也存在着疑问&#xff0c;比如用专业显卡还是消费级游戏显卡&#xff1f;一般来说&#xff0c;除非是特别专业的大型项目和软件&#xff0c;且预算在5位数以上&#xff0c;常…...

airlearning-ue4安装的踩坑记录

最近要安装airlearning-ue4&#xff0c;用于实现无人机仿真环境&#xff0c;该项目地址为&#xff1a;GitHub - harvard-edge/airlearning-ue4: Environment Generator for Air Learning Project. This version is build on top of UE4 game engine 由于这个项目已经完成好几年…...

uniapp优化h5项目-摇树优化,gzip压缩和删除console.log

1.摇树优化 勾选摇树优化,打包删除死代码 2.gzip压缩和删除console.log 安装插件webpack和compression-webpack-plugin webpack插件 npm install webpack4.46.0 --save-devcompression-webpack-plugin插件 npm install compression-webpack-plugin6.1.1 --save-devconst Com…...

Pycharm之配置python虚拟环境

最近给身边的人写了脚本&#xff0c;在自己电脑可以正常运行。分享给我身边的人&#xff0c;却运行不起来&#xff0c;然后把报错的截图给我看了&#xff0c;所以难道不会利用pycharm搭建虚拟的环境&#xff1f;记录一下配置的过程。 第一步&#xff1a;右键要打开的python的代…...

如何使用MybatisPlus进行数据分页显示

如何使用MybatisPlus进行数据的分页呢&#xff1f; 使用Mybatis Plus提供的分页插件来简化开发&#xff0c;在MybatisPlusInterceptor的拦截器中添加自动分页的PaginationInnerInterceptor拦截器&#xff0c;当前配置需要交给spring的bean管理&#xff0c;类上添加注解Configu…...

代码随想录 Day49 单调栈01 LeetCode LeetCodeT739每日温度 T496 下一个最大元素I

前言 折磨的死去活来的动态规划终于结束啦,今天秋秋给大家带来两题非常经典的单调栈问题,可能你不清楚单调栈是什么,可以用来解决什么问题,今天我们就来一步一步的逐渐了解单调栈,到能够灵活使用单调栈.注意以下讲解中&#xff0c;顺序的描述为 从栈头到栈底的顺序 什么时候用单…...

高可用--限流熔断降级

熔断 熔断是应对微服务雪崩效应的一种链路保护机制。 场景 服务端出现问题 服务指标&#xff1a;响应时间、错误率、连续错误数等&#xff0c;超过阈值出发熔断。硬件指标&#xff1a;CPU、网络IO、内存 目的 服务端恢复需要时间、服务端需要休息避免全调用链路崩溃&…...

C++初阶-list的底层

目录 1.std::list实现的所有代码 2.list的简单介绍 2.1实现list的类 2.2_list_iterator的实现 2.2.1_list_iterator实现的原因和好处 2.2.2_list_iterator实现 2.3_list_node的实现 2.3.1. 避免递归的模板依赖 2.3.2. 内存布局一致性 2.3.3. 类型安全的替代方案 2.3.…...

多场景 OkHttpClient 管理器 - Android 网络通信解决方案

下面是一个完整的 Android 实现&#xff0c;展示如何创建和管理多个 OkHttpClient 实例&#xff0c;分别用于长连接、普通 HTTP 请求和文件下载场景。 <?xml version"1.0" encoding"utf-8"?> <LinearLayout xmlns:android"http://schemas…...

如何在看板中体现优先级变化

在看板中有效体现优先级变化的关键措施包括&#xff1a;采用颜色或标签标识优先级、设置任务排序规则、使用独立的优先级列或泳道、结合自动化规则同步优先级变化、建立定期的优先级审查流程。其中&#xff0c;设置任务排序规则尤其重要&#xff0c;因为它让看板视觉上直观地体…...

线程与协程

1. 线程与协程 1.1. “函数调用级别”的切换、上下文切换 1. 函数调用级别的切换 “函数调用级别的切换”是指&#xff1a;像函数调用/返回一样轻量地完成任务切换。 举例说明&#xff1a; 当你在程序中写一个函数调用&#xff1a; funcA() 然后 funcA 执行完后返回&…...

java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别

UnsatisfiedLinkError 在对接硬件设备中&#xff0c;我们会遇到使用 java 调用 dll文件 的情况&#xff0c;此时大概率出现UnsatisfiedLinkError链接错误&#xff0c;原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用&#xff0c;结果 dll 未实现 JNI 协…...

如何在看板中有效管理突发紧急任务

在看板中有效管理突发紧急任务需要&#xff1a;设立专门的紧急任务通道、重新调整任务优先级、保持适度的WIP&#xff08;Work-in-Progress&#xff09;弹性、优化任务处理流程、提高团队应对突发情况的敏捷性。其中&#xff0c;设立专门的紧急任务通道尤为重要&#xff0c;这能…...

是否存在路径(FIFOBB算法)

题目描述 一个具有 n 个顶点e条边的无向图&#xff0c;该图顶点的编号依次为0到n-1且不存在顶点与自身相连的边。请使用FIFOBB算法编写程序&#xff0c;确定是否存在从顶点 source到顶点 destination的路径。 输入 第一行两个整数&#xff0c;分别表示n 和 e 的值&#xff08;1…...

深度学习习题2

1.如果增加神经网络的宽度&#xff0c;精确度会增加到一个特定阈值后&#xff0c;便开始降低。造成这一现象的可能原因是什么&#xff1f; A、即使增加卷积核的数量&#xff0c;只有少部分的核会被用作预测 B、当卷积核数量增加时&#xff0c;神经网络的预测能力会降低 C、当卷…...

九天毕昇深度学习平台 | 如何安装库?

pip install 库名 -i https://pypi.tuna.tsinghua.edu.cn/simple --user 举个例子&#xff1a; 报错 ModuleNotFoundError: No module named torch 那么我需要安装 torch pip install torch -i https://pypi.tuna.tsinghua.edu.cn/simple --user pip install 库名&#x…...

【电力电子】基于STM32F103C8T6单片机双极性SPWM逆变(硬件篇)

本项目是基于 STM32F103C8T6 微控制器的 SPWM(正弦脉宽调制)电源模块,能够生成可调频率和幅值的正弦波交流电源输出。该项目适用于逆变器、UPS电源、变频器等应用场景。 供电电源 输入电压采集 上图为本设计的电源电路,图中 D1 为二极管, 其目的是防止正负极电源反接, …...