卷积神经网络(CNN)天气识别
文章目录
- 前期工作
- 1. 设置GPU(如果使用的是CPU可以忽略这步)
- 我的环境:
- 2. 导入数据
- 3. 查看数据
- 二、数据预处理
- 1. 加载数据
- 2. 可视化数据
- 3. 再次检查数据
- 4. 配置数据集
- 三、构建CNN网络
- 四、编译
- 五、训练模型
- 六、模型评估
前期工作
1. 设置GPU(如果使用的是CPU可以忽略这步)
我的环境:
- 语言环境:Python3.6.5
- 编译器:jupyter notebook
- 深度学习环境:TensorFlow2.4.1
import tensorflow as tfgpus = tf.config.list_physical_devices("GPU")if gpus:gpu0 = gpus[0] #如果有多个GPU,仅使用第0个GPUtf.config.experimental.set_memory_growth(gpu0, True) #设置GPU显存用量按需使用tf.config.set_visible_devices([gpu0],"GPU")
2. 导入数据
import matplotlib.pyplot as plt
import os,PIL# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)from tensorflow import keras
from tensorflow.keras import layers,modelsimport pathlib
data_dir = "weather_photos/"
data_dir = pathlib.Path(data_dir)
3. 查看数据
数据集一共分为cloudy、rain、shine、sunrise四类,分别存放于weather_photos文件夹中以各自名字命名的子文件夹中。
image_count = len(list(data_dir.glob('*/*.jpg')))print("图片总数为:",image_count)
roses = list(data_dir.glob('sunrise/*.jpg'))
PIL.Image.open(str(roses[0]))

二、数据预处理
1. 加载数据
使用image_dataset_from_directory方法将磁盘中的数据加载到tf.data.Dataset中
batch_size = 32
img_height = 180
img_width = 180
train_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="training",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
Found 1125 files belonging to 4 classes.
Using 900 files for training.
val_ds = tf.keras.preprocessing.image_dataset_from_directory(data_dir,validation_split=0.2,subset="validation",seed=123,image_size=(img_height, img_width),batch_size=batch_size)
Found 1125 files belonging to 4 classes.
Using 225 files for validation.
我们可以通过class_names输出数据集的标签。标签将按字母顺序对应于目录名称。
class_names = train_ds.class_names
print(class_names)
['cloudy', 'rain', 'shine', 'sunrise']
2. 可视化数据
plt.figure(figsize=(20, 10))for images, labels in train_ds.take(1):for i in range(20):ax = plt.subplot(5, 10, i + 1)plt.imshow(images[i].numpy().astype("uint8"))plt.title(class_names[labels[i]])plt.axis("off")

3. 再次检查数据
for image_batch, labels_batch in train_ds:print(image_batch.shape)print(labels_batch.shape)break
(32, 180, 180, 3)
(32,)
Image_batch是形状的张量(32,180,180,3)。这是一批形状180x180x3的32张图片(最后一维指的是彩色通道RGB)。Label_batch是形状(32,)的张量,这些标签对应32张图片
4. 配置数据集
AUTOTUNE = tf.data.AUTOTUNEtrain_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)
三、构建CNN网络
卷积神经网络(CNN)的输入是张量 (Tensor) 形式的 (image_height, image_width, color_channels),包含了图像高度、宽度及颜色信息。不需要输入batch size。color_channels 为 (R,G,B) 分别对应 RGB 的三个颜色通道(color channel)。在此示例中,我们的 CNN 输入,fashion_mnist 数据集中的图片,形状是 (28, 28, 1)即灰度图像。我们需要在声明第一层时将形状赋值给参数input_shape。
num_classes = 4model = models.Sequential([layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3 layers.AveragePooling2D((2, 2)), # 池化层1,2*2采样layers.Conv2D(32, (3, 3), activation='relu'), # 卷积层2,卷积核3*3layers.AveragePooling2D((2, 2)), # 池化层2,2*2采样layers.Conv2D(64, (3, 3), activation='relu'), # 卷积层3,卷积核3*3layers.Dropout(0.3), layers.Flatten(), # Flatten层,连接卷积层与全连接层layers.Dense(128, activation='relu'), # 全连接层,特征进一步提取layers.Dense(num_classes) # 输出层,输出预期结果
])model.summary() # 打印网络结构
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
rescaling (Rescaling) (None, 180, 180, 3) 0
_________________________________________________________________
conv2d (Conv2D) (None, 178, 178, 16) 448
_________________________________________________________________
average_pooling2d (AveragePo (None, 89, 89, 16) 0
_________________________________________________________________
conv2d_1 (Conv2D) (None, 87, 87, 32) 4640
_________________________________________________________________
average_pooling2d_1 (Average (None, 43, 43, 32) 0
_________________________________________________________________
conv2d_2 (Conv2D) (None, 41, 41, 64) 18496
_________________________________________________________________
dropout (Dropout) (None, 41, 41, 64) 0
_________________________________________________________________
flatten (Flatten) (None, 107584) 0
_________________________________________________________________
dense (Dense) (None, 128) 13770880
_________________________________________________________________
dense_1 (Dense) (None, 5) 645
=================================================================
Total params: 13,795,109
Trainable params: 13,795,109
Non-trainable params: 0
_________________________________________________________________
四、编译
- 在准备对模型进行训练之前,还需要再对其进行一些设置。以下内容是在模型的编译步骤中添加的:
- 损失函数(loss):用于衡量模型在训练期间的准确率。
- 优化器(optimizer):决定模型如何根据其看到的数据和自身的损失函数进行更新。
- 指标(metrics):用于监控训练和测试步骤。以下示例使用了准确率,即被正确分类的图像的比率。
# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=0.001)
model.compile(optimizer=opt,loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),metrics=['accuracy'])
五、训练模型
epochs = 10
history = model.fit(train_ds,validation_data=val_ds,epochs=epochs
)
Epoch 1/10
29/29 [==============================] - 6s 58ms/step - loss: 1.5865 - accuracy: 0.4463 - val_loss: 0.5837 - val_accuracy: 0.7689
Epoch 2/10
29/29 [==============================] - 0s 12ms/step - loss: 0.5289 - accuracy: 0.8295 - val_loss: 0.5405 - val_accuracy: 0.8133
Epoch 3/10
29/29 [==============================] - 0s 12ms/step - loss: 0.2930 - accuracy: 0.8967 - val_loss: 0.5364 - val_accuracy: 0.8000
Epoch 4/10
29/29 [==============================] - 0s 12ms/step - loss: 0.2742 - accuracy: 0.9074 - val_loss: 0.4034 - val_accuracy: 0.8267
Epoch 5/10
29/29 [==============================] - 0s 11ms/step - loss: 0.1952 - accuracy: 0.9383 - val_loss: 0.3874 - val_accuracy: 0.8844
Epoch 6/10
29/29 [==============================] - 0s 11ms/step - loss: 0.1592 - accuracy: 0.9468 - val_loss: 0.3680 - val_accuracy: 0.8756
Epoch 7/10
29/29 [==============================] - 0s 12ms/step - loss: 0.0836 - accuracy: 0.9755 - val_loss: 0.3429 - val_accuracy: 0.8756
Epoch 8/10
29/29 [==============================] - 0s 12ms/step - loss: 0.0943 - accuracy: 0.9692 - val_loss: 0.3836 - val_accuracy: 0.9067
Epoch 9/10
29/29 [==============================] - 0s 12ms/step - loss: 0.0344 - accuracy: 0.9909 - val_loss: 0.3578 - val_accuracy: 0.9067
Epoch 10/10
29/29 [==============================] - 0s 11ms/step - loss: 0.0950 - accuracy: 0.9708 - val_loss: 0.4710 - val_accuracy: 0.8356
六、模型评估
acc = history.history['accuracy']
val_acc = history.history['val_accuracy']loss = history.history['loss']
val_loss = history.history['val_loss']epochs_range = range(epochs)plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

相关文章:
卷积神经网络(CNN)天气识别
文章目录 前期工作1. 设置GPU(如果使用的是CPU可以忽略这步)我的环境: 2. 导入数据3. 查看数据 二、数据预处理1. 加载数据2. 可视化数据3. 再次检查数据4. 配置数据集 三、构建CNN网络四、编译五、训练模型六、模型评估 前期工作 1. 设置GP…...
Linux进程间通信之匿名管道
文章目录 为什么要有进程间通信pipe函数共享管道原理管道特点管道的四种情况 管道的应用场景(进程池)ProcessPool.ccTask.hpp 为什么要有进程间通信 数据传输:一个进程需要将它的数据发送给另一个进程 资源共享:多个进程之间共享…...
【PTA题目】6-19 使用函数输出指定范围内的Fibonacci数 分数 20
6-19 使用函数输出指定范围内的Fibonacci数 分数 20 全屏浏览题目 切换布局 作者 C课程组 单位 浙江大学 本题要求实现一个计算Fibonacci数的简单函数,并利用其实现另一个函数,输出两正整数m和n(0<m≤n≤10000)之间的所有F…...
运行ps显示msvcp140.dll丢失怎么恢复?msvcp140.dll快速解决的4个不同方法
msvcp140.dll无法继续执行代码的主要原因有以下几点 系统缺失:msvcp140.dll是Visual Studio 2015编译的程序默认的库文件,如果系统中没有这个库文件,那么在运行相关程序时就会出现找不到msvcp140.dll的错误提示。 文件损坏:如果…...
Java多线程(3)
Java多线程(3) 深入剖析Java线程的生命周期,探秘JVM的线程状态! 线程的生命周期 Java 线程的生命周期主要包括五个阶段:新建、就绪、运行、阻塞和销毁。 **新建(New):**线程对象通过 new 关键字创建&…...
Java线程周期
Java线程的生命周期包含以下状态: 新建(New):当一个线程被创建但还没有被启动时,它的状态是新建。就绪(Runnable):当线程已经被启动并且没有任何阻止它立即运行的条件时,…...
map与set的封装
目录 红黑树的结点 与 红黑树的迭代器 红黑树的实现: 迭代器: 编辑 红黑树的查找: 红黑树的插入: 编辑 检查红色结点:编辑红黑树的左旋 编辑红黑树的右旋 编辑红黑树的双旋 Map的封装 编辑set的…...
mac无法向移动硬盘拷贝文件怎么解决?不能读取移动硬盘文件怎么解决
有时候我们在使用mac的时候,会遇到一些问题,比如无法向移动硬盘拷贝文件或者不能读取移动硬盘文件。这些问题会给我们的工作和生活带来不便,所以我们需要找到原因和解决办法。本文将为你介绍mac无法向移动硬盘拷贝文件怎么回事,以…...
基于Netty实现的简单聊天服务组件
目录 基于Netty实现的简单聊天服务组件效果展示技术选型:功能分析聊天服务基础设施配置(基于Netty)定义组件基础的配置(ChatProperties)定义聊天服务类(ChatServer)定义聊天服务配置初始化类&am…...
视频封面:从视频中提取封面,轻松制作吸引人的视频
在当今的数字时代,视频已成为人们获取信息、娱乐和交流的重要方式。一个吸引人的视频封面往往能抓住眼球,提高点击率和观看率。今天将介绍如何从视频中提取封面,轻松制作吸引人的视频封面。 一、准备素材选择合适的视频片段 首先࿰…...
CICD 持续集成与持续交付——gitlab
部署 虚拟机最小需求:4G内存 4核cpu 下载:https://mirrors.tuna.tsinghua.edu.cn/gitlab-ce/yum/el7/ 安装依赖性 [rootcicd1 ~]# yum install -y curl policycoreutils-python openssh-server perl[rootcicd1 ~]# yum install -y gitlab-ce-15.9.3-ce.0…...
Linux - 驱动开发 - RNG框架
说明 公司SOC上有一个新思的真随机数(TRNG)模块,Linux平台上需要提供接口给外部使用。早期方式是提供一个独立的TRNG驱动,实现比较简单的,但是使用方式不open,为了加入Linux生态环境,对接linux…...
qsort使用举例和qsort函数的模拟实现
qsort使用举例 qsort是C语言中的一个标准库函数,用于对数组或者其他数据结构中的元素进行排序。它的原型如下: void qsort(void *base, size_t nmemb, size_t size, int (*compar)(const void *, const void *)); 我们可以去官网搜来看一看:…...
AttributeError: module ‘gradio‘ has no attribute ‘ClearButton‘解决方案
大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的…...
Kafka 集群如何实现数据同步?
哈喽大家好,我是咸鱼 最近这段时间比较忙,将近一周没更新文章,再不更新我那为数不多的粉丝量就要库库往下掉了 T﹏T 刚好最近在学 Kafka,于是决定写篇跟 Kafka 相关的文章(文中有不对的地方欢迎大家指出)…...
一本了解生成式人工智能
上周,发了一篇关于大语言模型图数据库技术相结合的文章,引起了很多朋友的兴趣。当然了,这项技术本身就让俺们很兴奋,比如我就是从事图研发的,当然会非常关注它在图领域的应用与相互促就啦。 纵观人类文明历史ÿ…...
git 相关指令总结(持续更新中......)
文章目录 一、git clone 相关指令1.1 clone 指定分支的代码 一、git clone 相关指令 1.1 clone 指定分支的代码 git clone -b 分支名 仓库地址...
windows 安装 Oracle Database 19c
目录 什么是 Oracle 数据库 下载 Oracle 数据库 解压文件 运行安装程序 测试连接 什么是 Oracle 数据库 Oracle数据库是由美国Oracle Corporation(甲骨文公司)开发和提供的一种关系型数据库管理系统,它是一种强大的关系型数据库管理系统…...
【数据结构】图的存储结构(邻接矩阵)
一.邻接矩阵 1.图的特点 任何两个顶点之间都可能存在边,无法通过存储位置表示这种任意的逻辑关系。 图无法采用顺序存储结构。 2.如何存储图? 将顶点与边分开存储。 3.邻接矩阵(数组表示法) 基本思想: 用一个一维数…...
kubernetes--Pod控制器详解
目录 一、Pod控制器及其功用: 二、pod控制器的多种类型: 1、ReplicaSet: 1.1 ReplicaSet主要三个组件组成: 2、Deployment: 3、DaemonSet: 4、StatefulSet: 5、Job: 6、Cronjob: …...
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器的上位机配置操作说明
LBE-LEX系列工业语音播放器|预警播报器|喇叭蜂鸣器专为工业环境精心打造,完美适配AGV和无人叉车。同时,集成以太网与语音合成技术,为各类高级系统(如MES、调度系统、库位管理、立库等)提供高效便捷的语音交互体验。 L…...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...
【第二十一章 SDIO接口(SDIO)】
第二十一章 SDIO接口 目录 第二十一章 SDIO接口(SDIO) 1 SDIO 主要功能 2 SDIO 总线拓扑 3 SDIO 功能描述 3.1 SDIO 适配器 3.2 SDIOAHB 接口 4 卡功能描述 4.1 卡识别模式 4.2 卡复位 4.3 操作电压范围确认 4.4 卡识别过程 4.5 写数据块 4.6 读数据块 4.7 数据流…...
系统设计 --- MongoDB亿级数据查询优化策略
系统设计 --- MongoDB亿级数据查询分表策略 背景Solution --- 分表 背景 使用audit log实现Audi Trail功能 Audit Trail范围: 六个月数据量: 每秒5-7条audi log,共计7千万 – 1亿条数据需要实现全文检索按照时间倒序因为license问题,不能使用ELK只能使用…...
实现弹窗随键盘上移居中
实现弹窗随键盘上移的核心思路 在Android中,可以通过监听键盘的显示和隐藏事件,动态调整弹窗的位置。关键点在于获取键盘高度,并计算剩余屏幕空间以重新定位弹窗。 // 在Activity或Fragment中设置键盘监听 val rootView findViewById<V…...
使用LangGraph和LangSmith构建多智能体人工智能系统
现在,通过组合几个较小的子智能体来创建一个强大的人工智能智能体正成为一种趋势。但这也带来了一些挑战,比如减少幻觉、管理对话流程、在测试期间留意智能体的工作方式、允许人工介入以及评估其性能。你需要进行大量的反复试验。 在这篇博客〔原作者&a…...
Go 并发编程基础:通道(Channel)的使用
在 Go 中,Channel 是 Goroutine 之间通信的核心机制。它提供了一个线程安全的通信方式,用于在多个 Goroutine 之间传递数据,从而实现高效的并发编程。 本章将介绍 Channel 的基本概念、用法、缓冲、关闭机制以及 select 的使用。 一、Channel…...
Monorepo架构: Nx Cloud 扩展能力与缓存加速
借助 Nx Cloud 实现项目协同与加速构建 1 ) 缓存工作原理分析 在了解了本地缓存和远程缓存之后,我们来探究缓存是如何工作的。以计算文件的哈希串为例,若后续运行任务时文件哈希串未变,系统会直接使用对应的输出和制品文件。 2 …...
文件上传漏洞防御全攻略
要全面防范文件上传漏洞,需构建多层防御体系,结合技术验证、存储隔离与权限控制: 🔒 一、基础防护层 前端校验(仅辅助) 通过JavaScript限制文件后缀名(白名单)和大小,提…...
Python环境安装与虚拟环境配置详解
本文档旨在为Python开发者提供一站式的环境安装与虚拟环境配置指南,适用于Windows、macOS和Linux系统。无论你是初学者还是有经验的开发者,都能在此找到适合自己的环境搭建方法和常见问题的解决方案。 快速开始 一分钟快速安装与虚拟环境配置 # macOS/…...
