【Flink】窗口(Window)
窗口理解
窗口(Window)是处理无界流的关键所在。窗口可以将数据流装入大小有限的“桶”中,再对每个“桶”加以处理。 本文的重心将放在 Flink 如何进行窗口操作以及开发者如何尽可能地利用 Flink 所提供的功能。
对窗口的正确理解:
我们将窗口理解为一个一个的水桶,数据流(stream)就像水流,每个数据都会分发到对应的桶中,当达到结束时间时,对每个桶中收集的数据进行计算处理
注:
Flink中窗口并不是静态准备好的,而是动态创建——当有落在这个窗口区间范围的数据达到时,才创建对应的窗口
窗口的分类
按照驱动类型分
时间窗口(Time Window)
以时间来定义窗口的开始和结束,获取某一段时间内的数据(类比于我们的定时发车)
计数窗口(Count Window)
计数窗口是基于元素的个数来获取窗口,达到固定个数时就计算并关闭窗口。(类比于我们的人齐才发车)
按照窗口分配数据的规则分类
滚动窗口(Tumbling Window)
窗口之间没有重叠,也不会有间隔的首尾相撞状态,这样,每个数据都会被分到一个窗口,而且只会属于一个窗口。
滚动窗口的应用非常广泛,它可以对每个时间段做聚合统计,很多BI分析指标都可以用它来实现。
DataStream<T> input = ...;// 滚动 event-time 窗口
input.keyBy(<key selector>).window(TumblingEventTimeWindows.of(Time.seconds(5))).<windowed transformation>(<window function>);// 滚动 processing-time 窗口
input.keyBy(<key selector>).window(TumblingProcessingTimeWindows.of(Time.seconds(5))).<windowed transformation>(<window function>);// 长度为一天的滚动 event-time 窗口, 偏移量为 -8 小时。
input.keyBy(<key selector>).window(TumblingEventTimeWindows.of(Time.days(1), Time.hours(-8))).<windowed transformation>(<window function>);
滑动窗口(Sliding Windows)
滑动窗口大小也是固定的,但是窗口之间并不是首尾相接的,而是重叠的。
DataStream<T> input = ...;// 滑动 event-time 窗口
input.keyBy(<key selector>).window(SlidingEventTimeWindows.of(Time.seconds(10), Time.seconds(5))).<windowed transformation>(<window function>);// 滑动 processing-time 窗口
input.keyBy(<key selector>).window(SlidingProcessingTimeWindows.of(Time.seconds(10), Time.seconds(5))).<windowed transformation>(<window function>);// 滑动 processing-time 窗口,偏移量为 -8 小时
input.keyBy(<key selector>).window(SlidingProcessingTimeWindows.of(Time.hours(12), Time.hours(1), Time.hours(-8))).<windowed transformation>(<window function>);
会话窗口(Session Windows)
会话窗口,是基于“会话”(session)来对数据进行分组的,会话窗口只能基于时间来定义。
DataStream<T> input = ...;// 设置了固定间隔的 event-time 会话窗口
input.keyBy(<key selector>).window(EventTimeSessionWindows.withGap(Time.minutes(10))).<windowed transformation>(<window function>);// 设置了动态间隔的 event-time 会话窗口
input.keyBy(<key selector>).window(EventTimeSessionWindows.withDynamicGap((element) -> {// 决定并返回会话间隔})).<windowed transformation>(<window function>);// 设置了固定间隔的 processing-time session 窗口
input.keyBy(<key selector>).window(ProcessingTimeSessionWindows.withGap(Time.minutes(10))).<windowed transformation>(<window function>);// 设置了动态间隔的 processing-time 会话窗口
input.keyBy(<key selector>).window(ProcessingTimeSessionWindows.withDynamicGap((element) -> {// 决定并返回会话间隔})).<windowed transformation>(<window function>);
全局窗口
这种窗口对全局有效,会把相同的key的所有数据分配到同一个窗口中,这种窗口没有结束时间,默认不会触发计算,如果希望对数据进行处理,需要自定义“触发器”。
DataStream<T> input = ...;input.keyBy(<key selector>).window(GlobalWindows.create()).<windowed transformation>(<window function>);
计数窗口
计数窗口概念非常简单,本身底层是基于全局窗口(Global Window)实现的。Flink为我们提供了非常方便的接口:直接调用.countWindow()方法
滚动计数窗口
滚动计数窗口只需要传入一个长整型的参数size,表示窗口的大小。
stream.keyBy(...).countWindow(10)
滑动计数窗口
与滚动计数窗口类似,不过需要在.countWindow()调用时传入两个参数:size和slide,前者表示窗口大小,后者表示滑动步长。
stream.keyBy(...).countWindow(10,3)
窗口函数(Window Functions)
定义了 window assigner 之后,我们需要指定当窗口触发之后,我们如何计算每个窗口中的数据, 这就是 window function 的职责了
窗口函数有三种:ReduceFunction、AggregateFunction 或 ProcessWindowFunction。
ReduceFunction
ReduceFunction 指定两条输入数据如何合并起来产生一条输出数据,输入和输出数据的类型必须相同。 Flink 使用 ReduceFunction 对窗口中的数据进行增量聚合。
DataStream<Tuple2<String, Long>> input = ...;input.keyBy(<key selector>).window(<window assigner>).reduce(new ReduceFunction<Tuple2<String, Long>>() {//v1 和v2是 2个相同类型的输入参数public Tuple2<String, Long> reduce(Tuple2<String, Long> v1, Tuple2<String, Long> v2) {return new Tuple2<>(v1.f0, v1.f1 + v2.f1);}});
AggregateFunction
ReduceFunction 是 AggregateFunction 的特殊情况。 AggregateFunction 接收三个类型:输入数据的类型(IN)、累加器的类型(ACC)和输出数据的类型(OUT)。
/*** The accumulator is used to keep a running sum and a count. The {@code getResult} method* computes the average.*/
private static class AverageAggregateimplements AggregateFunction<Tuple2<String, Long>, Tuple2<Long, Long>, Double> {@Overridepublic Tuple2<Long, Long> createAccumulator() {return new Tuple2<>(0L, 0L);}@Overridepublic Tuple2<Long, Long> add(Tuple2<String, Long> value, Tuple2<Long, Long> accumulator) {return new Tuple2<>(accumulator.f0 + value.f1, accumulator.f1 + 1L);}@Overridepublic Double getResult(Tuple2<Long, Long> accumulator) {return ((double) accumulator.f0) / accumulator.f1;}@Overridepublic Tuple2<Long, Long> merge(Tuple2<Long, Long> a, Tuple2<Long, Long> b) {return new Tuple2<>(a.f0 + b.f0, a.f1 + b.f1);}
}DataStream<Tuple2<String, Long>> input = ...;input.keyBy(<key selector>).window(<window assigner>).aggregate(new AverageAggregate());
接口中有四个方法:
- createAccumulator():创建一个累加器,这就是为聚合创建了一个初始状态,每个聚合任务只会调用一次。
- add():将输入的元素添加到累加器中。
- getResult():从累加器中提取聚合的输出结果。
- merge():合并两个累加器,并将合并后的状态作为一个累加器返回。
可以看到,AggregateFunction的工作原理是:首先调用createAccumulator()为任务初始化一个状态(累加器);而后每来一个数据就调用一次add()方法,对数据进行聚合,得到的结果保存在状态中;等到了窗口需要输出时,再调用getResult()方法得到计算结果。很明显,与ReduceFunction相同,AggregateFunction也是增量式的聚合;而由于输入、中间状态、输出的类型可以不同,使得应用更加灵活方便。
ProcessWindowFunction
ProcessWindowFunction 有能获取包含窗口内所有元素的 Iterable, 以及用来获取时间和状态信息的 Context 对象,比其他窗口函数更加灵活。 ProcessWindowFunction 的灵活性是以性能和资源消耗为代价的, 因为窗口中的数据无法被增量聚合,而需要在窗口触发前缓存所有数据。
public class WindowProcessDemo {public static void main(String[] args) throws Exception {StreamExecutionEnvironment env = StreamExecutionEnvironment.getExecutionEnvironment();env.setParallelism(1);SingleOutputStreamOperator<WaterSensor> sensorDS = env.socketTextStream("127.0.0.1", 7777).map(new WaterSensorMapFunction());KeyedStream<WaterSensor, String> keyedStream = sensorDS.keyBy(WaterSensor::getId);WindowedStream<WaterSensor, String, TimeWindow> sensorWS = keyedStream.window(TumblingProcessingTimeWindows.of(Time.seconds(5)));sensorWS.process(new ProcessWindowFunction<WaterSensor, String, String, TimeWindow>() {@Overridepublic void process(String key, Context context, Iterable<WaterSensor> elements, Collector<String> out) {// 上下文可以拿到window对象,还有其他东西:侧输出流 等等long startTs = context.window().getStart();long endTs = context.window().getEnd();String windowStart = DateFormatUtils.format(startTs, "yyyy-MM-dd HH:mm:ss.SSS");String windowEnd = DateFormatUtils.format(endTs, "yyyy-MM-dd HH:mm:ss.SSS");long count = elements.spliterator().estimateSize();out.collect("key=" + key + "的窗口[" + windowStart + "," + windowEnd + ")包含" + count + "条数据===>" + elements);}}).print();env.execute();}
}
增量聚合和全窗口函数的结合使用
在实际应用中,我们往往希望兼具这两者的优点,把它们结合在一起使用。
我们之前在调用WindowedStream的.reduce()和.aggregate()方法时,只是简单地直接传入了一个ReduceFunction或AggregateFunction进行增量聚合。除此之外,其实还可以传入第二个参数:一个全窗口函数,可以是WindowFunction或者ProcessWindowFunction。
// ReduceFunction与WindowFunction结合
public <R> SingleOutputStreamOperator<R> reduce(ReduceFunction<T> reduceFunction,WindowFunction<T,R,K,W> function) // ReduceFunction与ProcessWindowFunction结合
public <R> SingleOutputStreamOperator<R> reduce(ReduceFunction<T> reduceFunction,ProcessWindowFunction<T,R,K,W> function)// AggregateFunction与WindowFunction结合
public <ACC,V,R> SingleOutputStreamOperator<R> aggregate(AggregateFunction<T,ACC,V> aggFunction,WindowFunction<V,R,K,W> windowFunction)// AggregateFunction与ProcessWindowFunction结合
public <ACC,V,R> SingleOutputStreamOperator<R> aggregate(AggregateFunction<T,ACC,V> aggFunction,ProcessWindowFunction<V,R,K,W> windowFunction)
相关文章:

【Flink】窗口(Window)
窗口理解 窗口(Window)是处理无界流的关键所在。窗口可以将数据流装入大小有限的“桶”中,再对每个“桶”加以处理。 本文的重心将放在 Flink 如何进行窗口操作以及开发者如何尽可能地利用 Flink 所提供的功能。 对窗口的正确理解ÿ…...

读像火箭科学家一样思考笔记03_第一性原理(上)
1. 思维的两种障碍 1.1. 为什么知识会成为一种缺陷而非一种美德 1.1.1. 知识是一种美德 1.1.2. 知识同样的特质也会把它变成一种缺点 1.1.3. 知识确实是个好东西,但知识的作用应该是给人们提供信息,而不是起约束作用 1.1.4. 知识应该启发智慧&#…...
npm私有云
安装node时npm会自动安装,npm也可以单独安装。 package.json 在使用npm时,package.json文件是非常重要的,因为它包含了关于项目的必要信息,比如名称、版本、依赖项等。在初始化新项目时,通常会使用npm init命令生成一…...

莹莹API管理系统源码附带两套模板
这是一个API后台管理系统的源码,可以自定义添加接口,并自带两个模板。 环境要求 PHP版本要求高于5.6且低于8.0,已测试通过的版本为7.4。 需要安装PHPSG11加密扩展。 已测试:宝塔/主机亲测成功搭建! 安装说明 &am…...
【Kingbase FlySync】命令模式:安装部署同步软件,实现KES到KES实现同步
【Kingbase FlySync】命令模式:安装部署同步软件,实现KES到KES实现同步迁移 概述准备环境目标资源1.测试虚拟机下载地址包含node1,node22.同步工具下载地址3.临时授权下载地址4.ruby工具下载地址5.EXAMv0.11.sql下载地址 实操:同步软件安装部署1.node1准…...

python使用selenium webDriver时 报错
可能原因和解决: 1. python 解释器 ----> 设置 2. 浏览器版本 与 浏览器驱动版本不一致 ----> 安装同一版本的 (下载chromedriver | 谷歌驱动更高版本的测试版) 参考:Python使用Selenium WebDriver的入门介绍及安装教程-CSDN博客 Selenium安…...
【ROS2机器人入门到实战】
ROS2机器人入门到实战教程(鱼香ROS) 写在前面 当前平台文章汇总地址:ROS2机器人从入门到实战获取完整教程及配套资料代码,请关注公众号<鱼香ROS>获取教程配套机器人开发平台:两驱版| 四驱版为方便交流,搭建了机器人技术问…...
Nuxt3框架局部文件引用外部JS/CSS文件的相关配置方法
引入外部JS: <script setup>useHead({script: [ {type: "text/javascript",src: https://cdnjs.cloudflare.com/ajax/libs/jquery/3.7.0/jquery.min.js}]}) </script>useHead只能与组件的setup和生命周期钩子一起使用 如果需要将js放置body区…...

Docker 可视化面板 ——Portainer
Portainer 是一个非常好用的 Docker 可视化面板,可以让你轻松地管理你的 Docker 容器。 官网:Portainer: Container Management Software for Kubernetes and Docker 【Docker系列】超级好用的Docker可视化工具——Portainer_哔哩哔哩_bilibili 环境 …...

Java 教育局民办教育信息服务与监管平台
1) 项目背景 按照《中华人民共和国民办教育促进法》和《中华人民共和国政府信息公开条例》的相关规定,为满足学生和家长、社会各界获取权威信息的需求,着力解决服务老百姓最后一公里问题,达到宣传民办教育和引导家长择校的效果࿰…...

小迪笔记(1)——操作系统文件下载反弹SHELL防火墙绕过
名词解释 POC:验证漏洞存在的代码; EXP:利用漏洞的代码; payload:漏洞利用载荷, shellcode:漏洞代码, webshell:特指网站后门; 木马:强调控制…...

Pytorch D2L Subplots方法对画图、图片处理
问题代码 def show_images(imgs, num_rows, num_cols, titlesNone, scale1.5): #save """绘制图像列表""" figsize (num_cols * scale, num_rows * scale) _, axes d2l.plt.subplots(num_rows, num_cols, figsizefigsize) axes axes.flatten…...
MATLAB算法实战应用案例精讲-【目标检测】YOLOV5(补充篇)
目录 算法原理 YOLOv5数据集训练 软硬件背景: 数据集准备 配置文件 模型训练...
WPF中可视化树和逻辑树的区别是什么
在WPF中,用户界面元素被组织成树形结构。这种结构主要分为两种:逻辑树(Logical Tree)和可视化树(Visual Tree)。它们在设计上各有特点和用途。 逻辑树(Logical Tree) 逻辑树是WPF中…...
小迪安全笔记(2)——web应用架构搭建漏洞HTTP数据包代理服务器
Web应用环境架构类 开发语言:php、java、python、ASP、ASPX等程序源码:用的人多了,就成CMS了。中间件容器:IIS、Apache、Nginx、Tomcat、Weblogic、Jboos、glasshfish等数据库类型:Access、Mysql、Mssql、Oracle、Redi…...

[AI]ChatGPT4 与 ChatGPT3.5 区别有多大
ChatGPT 3.5 注册已经不需要手机了,直接邮箱认证就可以,这可真算是好消息,坏消息是 ChatGPT 4 还是要收费。 那么 GPT-3.5 与 GPT-4 区别有多大呢,下面简单测试一下。 以从 TDengine 订阅数据为例,TDengine 算是不太小…...

node实战——koa实现文件上传
文章目录 ⭐前言⭐koa实现文件上传⭐foxapi测试⭐总结⭐结束⭐前言 大家好,我是yma16,本文分享关于node实战——node实战——koa实现文件上传。 本文适用对象:前端初学者转node方向,在校大学生,即将毕业的同学,计算机爱好者。 node系列往期文章 node_windows环境变量配置…...
C++中的this指针
C中的this指针 this 实际上是成员函数的一个形参,在调用成员函数时将对象的地址作为实参传递给 this。不过 this 这个形参是隐式的,它并不出现在代码中,而是在编译阶段由编译器默默地将它添加到参数列表中。 this指针是类的指针,…...
分析日志的一般套路
日志文件很多怎么快速查看? 整机日志一般会有统一的文件名命名规则(如包含时间点),可以根据问题现象时间点大致定位到相应的文件根据日志文件的修改时间属性,定位到相应的文件根据时间点全文件夹搜索内容,…...
使用Flink处理Kafka中的数据_题库子任务_Java语言实现
2024年职业院校技术大赛-高职大数据应用开发赛项专题。 使用Flink处理Kafka中的数据_题库子任务1、2、3_Java语言实现使用Flink处理Kafka中的数据_题库子任务4、5、6_Java语言实现使用Flink处理Kafka中的数据_题库子任务7、8、9_Java语言实现...
变量 varablie 声明- Rust 变量 let mut 声明与 C/C++ 变量声明对比分析
一、变量声明设计:let 与 mut 的哲学解析 Rust 采用 let 声明变量并通过 mut 显式标记可变性,这种设计体现了语言的核心哲学。以下是深度解析: 1.1 设计理念剖析 安全优先原则:默认不可变强制开发者明确声明意图 let x 5; …...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)
2025年能源电力系统与流体力学国际会议(EPSFD 2025)将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会,EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...
mongodb源码分析session执行handleRequest命令find过程
mongo/transport/service_state_machine.cpp已经分析startSession创建ASIOSession过程,并且验证connection是否超过限制ASIOSession和connection是循环接受客户端命令,把数据流转换成Message,状态转变流程是:State::Created 》 St…...
macOS多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用
文章目录 问题现象问题原因解决办法 问题现象 macOS启动台(Launchpad)多出来了:Google云端硬盘、YouTube、表格、幻灯片、Gmail、Google文档等应用。 问题原因 很明显,都是Google家的办公全家桶。这些应用并不是通过独立安装的…...
如何为服务器生成TLS证书
TLS(Transport Layer Security)证书是确保网络通信安全的重要手段,它通过加密技术保护传输的数据不被窃听和篡改。在服务器上配置TLS证书,可以使用户通过HTTPS协议安全地访问您的网站。本文将详细介绍如何在服务器上生成一个TLS证…...

2025盘古石杯决赛【手机取证】
前言 第三届盘古石杯国际电子数据取证大赛决赛 最后一题没有解出来,实在找不到,希望有大佬教一下我。 还有就会议时间,我感觉不是图片时间,因为在电脑看到是其他时间用老会议系统开的会。 手机取证 1、分析鸿蒙手机检材&#x…...

SpringTask-03.入门案例
一.入门案例 启动类: package com.sky;import lombok.extern.slf4j.Slf4j; import org.springframework.boot.SpringApplication; import org.springframework.boot.autoconfigure.SpringBootApplication; import org.springframework.cache.annotation.EnableCach…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题
在数字化浪潮席卷全球的今天,软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件,这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下,实现高效测试与快速迭代?这一命题正考验着…...

人工智能(大型语言模型 LLMs)对不同学科的影响以及由此产生的新学习方式
今天是关于AI如何在教学中增强学生的学习体验,我把重要信息标红了。人文学科的价值被低估了 ⬇️ 转型与必要性 人工智能正在深刻地改变教育,这并非炒作,而是已经发生的巨大变革。教育机构和教育者不能忽视它,试图简单地禁止学生使…...
08. C#入门系列【类的基本概念】:开启编程世界的奇妙冒险
C#入门系列【类的基本概念】:开启编程世界的奇妙冒险 嘿,各位编程小白探险家!欢迎来到 C# 的奇幻大陆!今天咱们要深入探索这片大陆上至关重要的 “建筑”—— 类!别害怕,跟着我,保准让你轻松搞…...