当前位置: 首页 > news >正文

数据结构 堆

手写堆,而非stl中的堆

如何手写一个堆?

//将数组建成堆 <O(n)

for (int i = n / 2;i;i--) //从n/2开始down

down(i);

从n/2元素开始down,最下面一层元素的个数是n/2,其余上面的元素的个数是n/2,从最下面一层到最高层,每层元素的个数是n/2^m【m从下到上,从1计算,m=1时是最下面一层】,时间复杂度就是元素个数*高度【高度从下到上,从0计算】

性质

1.堆是一棵完全二叉树【除叶子结点之外,所有结点都是非空的】

2.小根堆:每个点的值都是小于等于其左右两个儿子的,根结点就是整个数据中的最小值

静态数组存储——一维数组

用一个一维数组来存,根结点放在数组开头,1号点是根结点,结点x的左儿子下标为2x,右儿子下标为2x+1

两个基本操作

对于所有的堆操作而言,每个操作都可以使用这两个操作构建。

down(x) 向下调整——从下往上down一次就变成一个堆

大数位于上面,需要向下移

每次与其两个儿子进行比较,找到较小的儿子与其进行交换,直到小于所有的儿子为止【该结点的子结点都大于该结点】

//递归实现

void down(int u) {

int t = u;//用t表示三个点中的最小值

if (u * 2 <= size1 && h[u * 2] < h[t])//先判断是否有左儿子,然后判断左儿子是否小于其本身,如果成立,交换

t = u * 2;

if (u * 2 + 1 <= size1 && h[u * 2 + 1] < h[t])//再判断是否有右儿子,然后判断右儿子是否小于其本身,如果成立,交换

t = u * 2 + 1;

//最终,t存的就是三个点中最小的结点编号

if (u != t) {//如果u!=t,说明根结点就不是最小的,需要交换

swap(h[u], h[t]);//交换

down(t);//递归,交换之前h[t]<=h[u],交换之后h[t]>h[u],h[t]中存的是大数,对其再进行down操作,即递归

}

return;

}

up(x) 向上调整

小数位于下面,需要向上移

每次只需要与其根结点比较,如果小于其根结点,就与其根结点进行交换,直到>=其根结点为止

//循环实现

void up(int u) {

while (u / 2 && h[u / 2] > h[u]) {//u的父结点为u/2,父结点存在且大于本身,交换

swap(h[u / 2], h[u]);

u = u / 2;

}

return;

}

操作

【前三最重要】

【下标从1开始】

1.向集合中插入一个数

在整个堆的最后一个位置插入,然后再向上调整

heap[++size]=x;

up(size);

2.求集合中的最小值

heap[1];

3.删除最小值

用整个堆的最后一个元素覆盖掉堆顶的元素,然后size--,然后向下调整

因为删去最后一个结点特别容易,而删除根结点却不易

heap[1]=heap[size];

size--;

down(1);

4.删除任意一个元素

用堆的最后一个结点覆盖该结点,然后size--,然后向下调整(变大)、向上调整(变小),二选一执行

heap[k]=heap[size];

size--;

down(k);//变大

up(k);//变小

5.修改任意一个操作

heap[k]=x;

down(k);//变大

up(k);//变小

例题——堆排序

题目描述

输入一个长度为n的整数数列,从小到大输出前m小的数。

输入格式

第一行包含整数n和m。

第二行包含n个整数,表示整数数列。

输出格式

共一行,包含m个整数,表示整数数列中前m小的数。

数据范围

1≤m≤n≤10^5,

1≤数列中元素≤10^9

输入样例

5 3

4 5 1 3 2

输出样例

1 2 3

#include<iostream>

#include<algorithm>

using namespace std;

const int N = 100010;

int n, m;

int h[N], size1;//h[N]就是heap[N],size1存储当前有多少个元素

int main() {

scanf("%d%d", &n, &m);

for (int i = 1;i <= n;i++)

scanf("%d", &h[i]);

size1 = n;

//将数组建成堆 <O(n)

for (int i = n / 2;i;i--) //从n/2开始down

down(i);

while (m--) {

printf("%d ", h[1]);//每次输出堆顶元素,并将其删去

h[1] = h[size1];

size1--;

down(1);

}

return 0;

}

例题——模拟堆[包含映射]

增加两个数组

使用两个数组维护两个映射关系,ph[k] 存第k个插入的点在堆中的下标,hp[k] 存堆中下标为k的点是第几个插入的点

增加的原因

因为按第几个插入元素更改内容,需要知道第i个插入的元素在堆中的下标,所以需要ph的存在,而因为元素在进行down与up操作时,使得ph内容与实际堆的元素不对应,所以要改变ph,而改变ph应该知道,每一个下标对应的插入元素是第几个,所以需要hp的存在。每次交换位置时应该共同维护这两个数组。

交换操作

void heap_swap(int a, int b) {

swap(ph[hp[a]], ph[hp[b]]);//交换指向

swap(hp[a], hp[b]);

swap(h[a], h[b]);

return;

}

交换堆中的两个元素时,hp 和 ph 也改变。先改变 hp 和 ph 中的内容,然后改变这两个结点中的值。先根据交换的下标找到对应的 hp,并以两个 hp 元素值作为 ph 的下标,交换这2个 ph 元素值。之后根据下标交换 hp。

swap(ph[hp[a]], ph[hp[b]]);为什么这里的ph的下标是hp的元素值而不是堆中元素的编号?

因为ph的下标k的含义【即ph[k]的k的含义】是第k个插入的点,所以我们要找到第k个插入的点而不是堆中下标为k的点。

改变后的操作

up 操作

手写的heap_swap函数代替原来的swap函数

void up(int u) {

while (u / 2 && h[u / 2] > h[u]) {//u的父结点为u/2,父结点存在且大于本身,交换

heap_swap(u / 2, u);

u = u / 2;

}

return;

}

down 操作

手写的heap_swap函数代替原来的swap函数

void down(int u) {

int t = u;//用t表示三个点中的最小值

if (u * 2 <= size1 && h[u * 2] < h[t])//先判断是否有左儿子,然后判断左儿子是否小于其本身,如果成立,交换

t = u * 2;

if (u * 2 + 1 <= size1 && h[u * 2 + 1] < h[t])//再判断是否有右儿子,然后判断右儿子是否小于其本身,如果成立,交换

t = u * 2 + 1;

//最终,t存的就是三个点中最小的结点编号

if (u != t) {//如果u!=t,说明根结点就不是最小的,需要交换

heap_swap(u, t);//交换

down(t);

}

return;

}

向集合中插入一个数

添加hp和ph数组中的映射关系

scanf("%d", &x); //向堆中插入x

size1++;

m++;

ph[m] = size1;

hp[size1] = m;

h[size1] = x;

up(size1);

输出集合中的最小值

printf("%d\n", h[1])

删除最小值

手写的heap_swap函数代替原来的swap函数

heap_swap(1, size1);

size1--;

down(1);

删除第k个插入的元素

scanf("%d", &k);//输入k

k = ph[k];//找到第k个插入的元素在堆中的下标,然会对其进行删除

heap_swap(k, size1);//用堆中最后一个元素覆盖找到的元素,然会进行调整

size1--;

down(k), up(k);

修改第k个插入的元素

scanf("%d%d", &k, &x);//输入k和修改后的值x

k = ph[k];//找到第k个插入的元素在堆中的下标,然后修改其值,修改后进行调整

h[k] = x;

down(k), up(k);

题目描述

维护一个集合,初始时集合为空,支持如下几种操作:

“I x”,插入一个数x;

“PM”,输出当前集合中的最小值;

“DM”,删除当前集合中的最小值(当最小值不唯一时,删除最早插入的最小值);

“D k”,删除第k个插入的数;

“C k x”,修改第k个插入的数,将其变为x;

现在要进行N次操作,对于所有第2个操作,输出当前集合的最小值。

输入格式

第一行包含整数N。

接下来N行,每行包含一个操作指令,操作指令为”I x”,”PM”,”DM”,”D k”或”C k x”中的一种。

输出格式

对于每个输出指令“PM”,输出一个结果,表示当前集合中的最小值。

每个结果占一行。

数据范围

1≤N≤10^5

−10^9≤x≤10^9

数据保证合法。

输入样例

8
I -10
PM
I -10
D 1
C 2 8
I 6
PM
DM

输出样例

-10
6

#include<iostream>

#include<algorithm>

#include<string.h>

using namespace std;

const int N = 100010;

int h[N], ph[N], hp[N], size1;//h[N]就是heap[N],size1存储当前有多少个元素,ph[k]存第k个插入数组的下标

//ph[j]=k【第j次插入数组的数的下标是k】,hp[k]=j【下标为k的数是第j次插入数组中的数】

void heap_swap(int a, int b) {

swap(ph[hp[a]], ph[hp[b]]);//交换指向

swap(hp[a], hp[b]);

swap(h[a], h[b]);

return;

}

void down(int u) {

int t = u;//用t表示三个点中的最小值

if (u * 2 <= size1 && h[u * 2] < h[t])//先判断是否有左儿子,然后判断左儿子是否小于其本身,如果成立,交换

t = u * 2;

if (u * 2 + 1 <= size1 && h[u * 2 + 1] < h[t])//再判断是否有右儿子,然后判断右儿子是否小于其本身,如果成立,交换

t = u * 2 + 1;

//最终,t存的就是三个点中最小的结点编号

if (u != t) {//如果u!=t,说明根结点就不是最小的,需要交换

heap_swap(u, t);//交换

down(t);

}

return;

}

void up(int u) {

while (u / 2 && h[u / 2] > h[u]) {//u的父结点为u/2,父结点存在且大于本身,交换

heap_swap(u / 2, u);

u = u / 2;

}

return;

}

int main() {

int n, m = 0;

scanf("%d", &n);

while (n--) {

char op[10];

int k, x;

scanf("%s", op);

if (!strcmp(op, "I")) {

scanf("%d", &x);

size1++;

m++;

ph[m] = size1;

hp[size1] = m;

h[size1] = x;

up(size1);

}

else if (!strcmp(op, "PM"))

printf("%d\n", h[1]);

else if (!strcmp(op, "DM")) {

heap_swap(1, size1);

size1--;

down(1);

}

else if (!strcmp(op, "D")) {

scanf("%d", &k);

k = ph[k];

heap_swap(k, size1);

size1--;

down(k), up(k);

}

else {

scanf("%d%d", &k, &x);

k = ph[k];

h[k] = x;

down(k), up(k);

}

}

return 0;

}

相关文章:

数据结构 堆

手写堆&#xff0c;而非stl中的堆 如何手写一个堆&#xff1f; //将数组建成堆 <O(n) for (int i n / 2;i;i--) //从n/2开始down down(i); 从n/2元素开始down&#xff0c;最下面一层元素的个数是n/2&#xff0c;其余上面的元素的个数是n/2&#xff0c;从最下面一层到最高层…...

将 ONLYOFFICE 文档编辑器与 Node.js 应用集成

我们来了解下&#xff0c;如何将 ONLYOFFICE 文档编辑器与您的 Web 应用集成。 许多 Web 应用都可以从文档编辑功能中获益。但是要从头开始创建这个功能&#xff0c;需要花费大量时间和精力。幸运的是&#xff0c;您可以使用 ONLYOFFICE——这是一款开源办公套件&#xff0c;可…...

CentOS 7搭建Gitlab流程

目录 1、查询docker镜像gitlab-ce 2、拉取镜像 3、查询已下载的镜像 4、新建gitlab文件夹 5、在gitlab文件夹下新建相关文件夹 6、创建运行gitlab的容器 7、查看docker容器 8、根据Linux地址访问gitlab 9、进入docker容器&#xff0c;设置用户名的和密码 10、登录git…...

Idea安装完成配置

目录&#xff1a; 环境配置Java配置Maven配置Git配置 基础设置编码级设置File Header自动生成序列化编号配置 插件安装MyBtisPlusRestfulTooklkit-fix 环境配置 Java配置 Idea右上方&#xff0c;找到Project Settings. 有些版本直接有&#xff0c;有些是在设置下的二级菜单下…...

超详细~25考研规划~感恩现在努力的你!!!

25考研规划 俄语&#xff0c;翻译过来叫我爱你 考试时间 第一天 8.30-11.30政治——100分 2.00-5.00英语——100分 第二天 8.30-11.30数学——150分 2.00-5.00专业课——150分 1.什么是25考研 将在2024年12月参加考研&#xff0c;2025年本科毕业&#xff0c;9月读研究…...

智慧城市安全监控的新利器

在传统的城市管理中&#xff0c;井盖的监控一直是一个难题&#xff0c;而井盖异动传感器的出现为这一问题提供了有效的解决方案。它具有体积小、重量轻、安装方便等特点&#xff0c;可以灵活地应用于各种类型的井盖&#xff0c;实现对城市基础设施的全方位监控。 智能井盖监测终…...

【算法】石子合并(区间dp)

题目 设有 N 堆石子排成一排&#xff0c;其编号为 1,2,3,…,N。 每堆石子有一定的质量&#xff0c;可以用一个整数来描述&#xff0c;现在要将这 N 堆石子合并成为一堆。 每次只能合并相邻的两堆&#xff0c;合并的代价为这两堆石子的质量之和&#xff0c;合并后与这两堆石子…...

C++-特殊类和单例模式

1.请设计一个类&#xff0c;不能被拷贝 拷贝构造函数以及赋值运算符重载&#xff0c;因此想要让一个类禁止拷贝&#xff0c;只需让该类不能调用拷贝构造函数以及赋值运算符重载即可。 //该类不能发生拷贝class NonCopy{public:NonCopy(const NonCopy& Nc) delete;NonCopy&…...

【开源】基于Vue.js的智能教学资源库系统

项目编号&#xff1a; S 050 &#xff0c;文末获取源码。 \color{red}{项目编号&#xff1a;S050&#xff0c;文末获取源码。} 项目编号&#xff1a;S050&#xff0c;文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 数据中心模块2.2 课程档案模块2.3 课…...

C语言之qsort()函数的模拟实现

C语言之qsort()函数的模拟实现 文章目录 C语言之qsort()函数的模拟实现1. 简介2. 冒泡排序3. 对冒泡排序进行改造4. 改造部分4.1 保留部分的冒泡排序4.2 比较部分4.3 交换部分 5. bubble_sort2完整代码6. 使用bubble_sort2来排序整型数组7. 使用bubble_sort2来排序结构体数组7.…...

数字化未来:实时云渲染在智慧城市中的创新应用

数字中国战略"是国家推动数字经济发展的战略框架。这个战略旨在加速数字化转型&#xff0c;推动信息技术在各个领域的应用&#xff0c;提高社会经济效益和人民生活质量。而智慧城市作为其中的重要一环&#xff0c;重要性不言而喻。 智慧城市是当今城市发展的热点和趋势&a…...

Go语言常用命令详解(二)

文章目录 前言常用命令go bug示例参数说明 go doc示例参数说明 go env示例 go fix示例 go fmt示例 go generate示例 总结写在最后 前言 接着上一篇继续介绍Go语言的常用命令 常用命令 以下是一些常用的Go命令&#xff0c;这些命令可以帮助您在Go开发中进行编译、测试、运行和…...

ChatGPT 从零到一打造私人智能英语学习助手

近几年&#xff0c;随着智能化技术的发展和人工智能的兴起&#xff0c;越来越多的应用程序开始涌现出来。在这些应用中&#xff0c;语音识别、自然语言处理以及机器翻译等技术都得到了广泛的应用。其中&#xff0c;聊天机器人成为了最受欢迎的人工智能应用之一&#xff0c;它们…...

算法升级之路(七)-盛最多水的容器

给定一个长度为 n 的整数数组 height 。有 n 条垂线&#xff0c;第 i 条线的两个端点是 (i, 0) 和 (i, height[i]) 。 找出其中的两条线&#xff0c;使得它们与 x 轴共同构成的容器可以容纳最多的水。 返回容器可以储存的最大水量。 原题链接: 盛最多水的容器 解题思路&…...

milvus数据库索引管理

一、建立向量索引 默认情况下&#xff0c;Milvus不会对小于1,024行的段进行索引。 1.准备索引参数 index_params {"metric_type":"L2","index_type":"IVF_FLAT","params":{"nlist":1024} } #"nlist"…...

JVM中的 -Xms参数 设置 JVM 的初始堆大小

在 Java 虚拟机&#xff08;JVM&#xff09;的配置中&#xff0c;-Xms 是一个启动参数&#xff0c;用于设置 JVM 的初始堆大小&#xff08;Initial Heap Size&#xff09;。这个参数对于优化 Java 应用程序的性能非常重要&#xff0c;特别是在处理需要大量内存的应用程序时。 …...

Idea 创建 Spring 项目(保姆级)

描述信息 最近卷起来&#xff0c;系统学习Spring&#xff1b;俗话说&#xff1a;万事开头难&#xff1b;创建一个Spring项目在网上找了好久没有找到好的方式&#xff1b;摸索了半天产出如下文档。 在 Idea 中新建项目 填写信息如下 生成项目目录结构 pom添加依赖 <depende…...

C++多线程学习(一):C++11 多线程快速入门

参考引用 C11 14 17 20 多线程从原理到线程池实战代码运行环境&#xff1a;Visual Studio 2019 1. 为什么要用多线程 任务分解 耗时的操作&#xff0c;任务分解&#xff0c;实时响应 数据分解 充分利用多核CPU处理数据 数据流分解 读写分离&#xff0c;解耦合设计 2. 第一个…...

Linux系统之lsof命令的基本使用

Linux系统之lsof命令的基本使用 一、lsof命令的基本使用二、lsof命令的使用帮助2.1 lsof命令的help帮助信息2.2 lsof命令帮助解释 三、lsof的基本使用3.1 直接使用lsof命令3.2 查看某个进程打开的所有文件3.3 查看某个用户打开的所有文件3.4 查看某个文件被哪些进程打开3.5 查看…...

性能压力测试的优势与重要性

性能压力测试是软件开发过程中至关重要的一环&#xff0c;它通过模拟系统在极限条件下的运行&#xff0c;以评估系统在正常和异常负载下的表现。这种测试为确保软件系统的可靠性、稳定性和可伸缩性提供了关键信息。下面将探讨性能压力测试的优势以及为什么在软件开发中它具有不…...

江苏艾立泰跨国资源接力:废料变黄金的绿色供应链革命

在华东塑料包装行业面临限塑令深度调整的背景下&#xff0c;江苏艾立泰以一场跨国资源接力的创新实践&#xff0c;重新定义了绿色供应链的边界。 跨国回收网络&#xff1a;废料变黄金的全球棋局 艾立泰在欧洲、东南亚建立再生塑料回收点&#xff0c;将海外废弃包装箱通过标准…...

C++ 基础特性深度解析

目录 引言 一、命名空间&#xff08;namespace&#xff09; C 中的命名空间​ 与 C 语言的对比​ 二、缺省参数​ C 中的缺省参数​ 与 C 语言的对比​ 三、引用&#xff08;reference&#xff09;​ C 中的引用​ 与 C 语言的对比​ 四、inline&#xff08;内联函数…...

从零实现STL哈希容器:unordered_map/unordered_set封装详解

本篇文章是对C学习的STL哈希容器自主实现部分的学习分享 希望也能为你带来些帮助~ 那咱们废话不多说&#xff0c;直接开始吧&#xff01; 一、源码结构分析 1. SGISTL30实现剖析 // hash_set核心结构 template <class Value, class HashFcn, ...> class hash_set {ty…...

关键领域软件测试的突围之路:如何破解安全与效率的平衡难题

在数字化浪潮席卷全球的今天&#xff0c;软件系统已成为国家关键领域的核心战斗力。不同于普通商业软件&#xff0c;这些承载着国家安全使命的软件系统面临着前所未有的质量挑战——如何在确保绝对安全的前提下&#xff0c;实现高效测试与快速迭代&#xff1f;这一命题正考验着…...

Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信

文章目录 Linux C语言网络编程详细入门教程&#xff1a;如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket&#xff08;服务端和客户端都要&#xff09;2. 绑定本地地址和端口&#x…...

jmeter聚合报告中参数详解

sample、average、min、max、90%line、95%line,99%line、Error错误率、吞吐量Thoughput、KB/sec每秒传输的数据量 sample&#xff08;样本数&#xff09; 表示测试中发送的请求数量&#xff0c;即测试执行了多少次请求。 单位&#xff0c;以个或者次数表示。 示例&#xff1a;…...

Python实现简单音频数据压缩与解压算法

Python实现简单音频数据压缩与解压算法 引言 在音频数据处理中&#xff0c;压缩算法是降低存储成本和传输效率的关键技术。Python作为一门灵活且功能强大的编程语言&#xff0c;提供了丰富的库和工具来实现音频数据的压缩与解压。本文将通过一个简单的音频数据压缩与解压算法…...

【51单片机】4. 模块化编程与LCD1602Debug

1. 什么是模块化编程 传统编程会将所有函数放在main.c中&#xff0c;如果使用的模块多&#xff0c;一个文件内会有很多代码&#xff0c;不利于组织和管理 模块化编程则是将各个模块的代码放在不同的.c文件里&#xff0c;在.h文件里提供外部可调用函数声明&#xff0c;其他.c文…...

数据分析六部曲?

引言 上一章我们说到了数据分析六部曲&#xff0c;何谓六部曲呢&#xff1f; 其实啊&#xff0c;数据分析没那么难&#xff0c;只要掌握了下面这六个步骤&#xff0c;也就是数据分析六部曲&#xff0c;就算你是个啥都不懂的小白&#xff0c;也能慢慢上手做数据分析啦。 第一…...

ZYNQ学习记录FPGA(二)Verilog语言

一、Verilog简介 1.1 HDL&#xff08;Hardware Description language&#xff09; 在解释HDL之前&#xff0c;先来了解一下数字系统设计的流程&#xff1a;逻辑设计 -> 电路实现 -> 系统验证。 逻辑设计又称前端&#xff0c;在这个过程中就需要用到HDL&#xff0c;正文…...