当前位置: 首页 > news >正文

分布式任务处理

分布式任务处理

1. 什么是分布式任务调度

视频上传成功需要对视频的格式进行处理,如何用Java程序对视频进行处理呢?这里有一个关键的需求就是当视频比较多的时候我们如何可以高效处理。

如何去高效处理一批任务呢?

1、多线程

多线程是充分利用单机的资源。

2、分布式加多线程

充分利用多台计算机,每台计算机使用多线程处理。

方案2可扩展性更强。

方案2是一种分布式任务调度的处理方案。

什么是分布式任务调度?

我们可以先思考一下下面业务场景的解决方案:

        某电商系统需要在每天上午10点,下午3点,晚上8点发放一批优惠券。

        某财务系统需要在每天上午10点前结算前一天的账单数据,统计汇总。

        某电商平台每天凌晨3点,要对订单中的无效订单进行清理。

        12306网站会根据车次不同,设置几个时间点分批次放票。

        电商整点抢购,商品价格某天上午8点整开始优惠。

        商品成功发货后,需要向客户发送短信提醒。

类似的场景还有很多,我们该如何实现?

以上这些场景,就是任务调度所需要解决的问题。

任务调度顾名思义,就是对任务的调度,它是指系统为了完成特定业务,基于给定时间点,给定时间间隔或者给定执行次数自动执行任务。

如何实现任务调度?

多线程方式实现:

学过多线程的同学,可能会想到,我们可以开启一个线程,每sleep一段时间,就去检查是否已到预期执行时间。

以下代码简单实现了任务调度的功能:

Java
public static void main(String[] args) {   
    //
任务执行间隔时间
    final long timeInterval = 1000;
    Runnable runnable = new Runnable() {
        public void run() {
            while (true) {
                //TODO:something
                try {
                    Thread.sleep(timeInterval);
                } catch (InterruptedException e) {
                    e.printStackTrace();
                }
            }
        }
    };
    Thread thread = new Thread(runnable);
    thread.start();
}

上面的代码实现了按一定的间隔时间执行任务调度的功能。

Jdk也为我们提供了相关支持,如Timer、ScheduledExecutor,下边我们了解下。

Timer方式实现

Java
public static void main(String[] args){ 
    Timer timer = new Timer(); 
    timer.schedule(new TimerTask(){
        @Override 
        public void run() { 
           //TODO
:something
        } 
    }, 1000, 2000);  //1秒后开始调度,每2秒执行一次
}

        Timer 的优点在于简单易用,每个Timer对应一个线程,因此可以同时启动多个Timer并行执行多个任务,同一个Timer中的任务是串行执行。

ScheduledExecutor方式实现

Java
public static void main(String [] agrs){
    ScheduledExecutorService service = Executors.newScheduledThreadPool(10);
    service.scheduleAtFixedRate(
            new Runnable() {
                @Override
                public void run() {
                    //TODO
:something
                    System.out.println("todo something");
                }
            }, 1,
            2, TimeUnit.SECONDS);
}

        Java 5 推出了基于线程池设计的 ScheduledExecutor,其设计思想是,每一个被调度的任务都会由线程池中一个线程去执行,因此任务是并发执行的,相互之间不会受到干扰。

        Timer 和 ScheduledExecutor 都仅能提供基于开始时间与重复间隔的任务调度,不能胜任更加复杂的调度需求。比如,设置每月第一天凌晨1点执行任务、复杂调度任务的管理、任务间传递数据等等。

        Quartz 是一个功能强大的任务调度框架,它可以满足更多更复杂的调度需求,Quartz 设计的核心类包括 Scheduler, Job 以及 Trigger。其中,Job 负责定义需要执行的任务,Trigger 负责设置调度策略,Scheduler 将二者组装在一起,并触发任务开始执行。Quartz支持简单的按时间间隔调度、还支持按日历调度方式,通过设置CronTrigger表达式(包括:秒、分、时、日、月、周、年)进行任务调度。

第三方Quartz方式实现

Java
public static void main(String [] agrs) throws SchedulerException {
    //
创建一个Scheduler
    SchedulerFactory schedulerFactory = new StdSchedulerFactory();
    Scheduler scheduler = schedulerFactory.getScheduler();
    //创建JobDetail
    JobBuilder jobDetailBuilder = JobBuilder.newJob(MyJob.class);
    jobDetailBuilder.withIdentity("jobName","jobGroupName");
    JobDetail jobDetail = jobDetailBuilder.build();
    //创建触发的CronTrigger 支持按日历调度
        CronTrigger trigger = TriggerBuilder.newTrigger()
                .withIdentity("triggerName", "triggerGroupName")
                .startNow()
                .withSchedule(CronScheduleBuilder.cronSchedule("0/2 * * * * ?"))
                .build();
        //创建触发的SimpleTrigger 简单的间隔调度
        /*SimpleTrigger trigger = TriggerBuilder.newTrigger()
                .withIdentity("triggerName","triggerGroupName")
                .startNow()
                .withSchedule(SimpleScheduleBuilder
                        .simpleSchedule()
                        .withIntervalInSeconds(2)
                        .repeatForever())
                .build();*/
    scheduler.scheduleJob(jobDetail,trigger);
    scheduler.start();
}

public class MyJob implements Job {
    @Override
    public void execute(JobExecutionContext jobExecutionContext){
        System.out.println("todo something");
    }
}

通过以上内容我们学习了什么是任务调度,任务调度所解决的问题,以及任务调度的多种实现方式。

什么是分布式任务调度?

        通常任务调度的程序是集成在应用中的,比如:优惠卷服务中包括了定时发放优惠卷的的调度程序,结算服务中包括了定期生成报表的任务调度程序,由于采用分布式架构,一个服务往往会部署多个冗余实例来运行我们的业务,在这种分布式系统环境下运行任务调度,我们称之为分布式任务调度,如下图:

分布式调度要实现的目标:

        不管是任务调度程序集成在应用程序中,还是单独构建的任务调度系统,如果采用分布式调度任务的方式就相当于将任务调度程序分布式构建,这样就可以具有分布式系统的特点,并且提高任务的调度处理能力:

1、并行任务调度

        并行任务调度实现靠多线程,如果有大量任务需要调度,此时光靠多线程就会有瓶颈了,因为一台计算机CPU的处理能力是有限的。

        如果将任务调度程序分布式部署,每个结点还可以部署为集群,这样就可以让多台计算机共同去完成任务调度,我们可以将任务分割为若干个分片,由不同的实例并行执行,来提高任务调度的处理效率。

2、高可用

        若某一个实例宕机,不影响其他实例来执行任务。

3、弹性扩容

        当集群中增加实例就可以提高并执行任务的处理效率。

4、任务管理与监测

        对系统中存在的所有定时任务进行统一的管理及监测。让开发人员及运维人员能够时刻了解任务执行情况,从而做出快速的应急处理响应。

5、避免任务重复执行

        当任务调度以集群方式部署,同一个任务调度可能会执行多次,比如在上面提到的电商系统中到点发优惠券的例子,就会发放多次优惠券,对公司造成很多损失,所以我们需要控制相同的任务在多个运行实例上只执行一次。

 

相关文章:

分布式任务处理

分布式任务处理 1. 什么是分布式任务调度 视频上传成功需要对视频的格式进行处理,如何用Java程序对视频进行处理呢?这里有一个关键的需求就是当视频比较多的时候我们如何可以高效处理。 如何去高效处理一批任务呢? 1、多线程 多线程是充…...

Linux 命令复习

常用命令 1、目录操作 cd 切换目录 cd / 切换到根目录 cd ~ 回到个人用户的主目录 ls 查看当前目录下所有文件的详细信息 list的意思 ll 查看当前目录下所有文件的详细信息 pwd 显示当前目录的全路径 . …...

leetcode 困难 —— 天际线问题(优先队列)

(思路感觉挺明显的,就是一些特殊情况得考虑清楚) 题目: 城市的 天际线 是从远处观看该城市中所有建筑物形成的轮廓的外部轮廓。给你所有建筑物的位置和高度,请返回 由这些建筑物形成的 天际线 。 每个建筑物的几何信息…...

离散数学笔记_第一章:逻辑和证明(2 )

1.2 命题逻辑的应用1.2.1 语句翻译 1.2.2 系统规范说明 1.2.3 布尔搜索 1.2.4 逻辑谜题泥巴孩子谜题骑士和流氓(考研逻辑题)1.1.2.5 逻辑电路1.2.1 语句翻译 🐳为啥要翻译语句? ➡因语言常常有二义性(有歧义&#x…...

MFCC语音特征值提取算法

博主简介 博主是一名大二学生,主攻人工智能研究。感谢让我们在CSDN相遇,博主致力于在这里分享关于人工智能,c,Python,爬虫等方面知识的分享。 如果有需要的小伙伴可以关注博主,博主会继续更新的&#xff0c…...

TencentOS3.1编译安装redis6.2.5

下载地址:https://redis.io/download 最近版为7.0.8,本次安装的是6.2.5 软件包解包并进入目录。 redis是c语言编写的,编译需要gcc,按网上资料说默认安装的gcc版本过低(可能是4.8.5),使用rpm …...

AI顶会accepted papers list

为方便相关paper调研,对相关顶会文章列表和下载地址汇总,会议包括:AAAI、ACL、IJCAI、ICLR、COLING、SIGIR、WSDM、WWW、ICML、KDD、NeurIPS、CVPR、ECCV、ACM MM 2023 Accepted papers list 更新于:(2022.11.24&…...

IOS逆向之frida安装

首先手机要越狱,这个就不说了,博主就是咸鱼搞了个160的苹果6, 自己刷到苹果6支持最新的12.5.7版本后越狱; 谁让他低版本,不支持 CrackerXI砸壳呢,当时你要是使用 frida-ios-dump 也是可以的; …...

《金山区提信心扩需求稳增长促发展行动方案》的通知

金发改规〔2023〕1号 各镇政府、街道办事处、园区管委会,区政府各部门、各直属单位: 《金山区提信心扩需求稳增长促发展行动方案》已经区委、区政府同意,现印发给你们,请认真按照执行。 附件:金山区提信心扩需求稳增…...

【Redis】Java客户端JedisSpringDataRedis入门(三)

🚗Redis学习第三站~ 🚩起始站:【Redis】概述&环境搭建(一) 🚩本文已收录至专栏:数据库学习之旅 👍希望您能有所收获 在上一篇中我们学习了Redis常见命令的使用,显然,我们不可能一…...

挑选销售自动化工具应该关注什么功能?

销售自动化可以极大地提高你的生产力和效率,每周都为你节省时间。这样,你就可以把更多的时间用于完成交易,而减少用于行政任务的时间。市面上的销售自动化工具有很多,作为一般经验法则,以下是销售自动化工具中需要寻找…...

thread.join 是干什么的?原理是什么?

Thread.join 加了join,表示join的线程的修改对于join之外的代码是可见的。 代码示例: public class JoinDemo {private static int i 1000;public static void main(String[] args) {new Thread(()->{i 3000;}).start();System.out.println("…...

论文阅读 | Cross-Attention Transformer for Video Interpolation

前言:ACCV2022wrokshop用transformer做插帧的文章,q,kv,来自不同的图像 代码:【here】 Cross-Attention Transformer for Video Interpolation 引言 传统的插帧方法多用光流,但是光流的局限性在于 第一&…...

【C++修炼之路】22.哈希

每一个不曾起舞的日子都是对生命的辜负 哈希一.哈希概念及性质1.1 哈希概念1.2 哈希冲突1.3 哈希函数二.哈希冲突解决2.1 闭散列/开放定址法2.2 开散列/哈希桶三.开放定址法代码3.1 插入Insert3.2 查找Find3.3 删除Erase3.4 映射的改良&完整代码四.开散列代码4.1 插入Inser…...

HashMap原理(一):哈希函数的设计

目录导航哈希函数的作用与本质哈希函数设计哈希表初始容量的校正哈希表容量为2的整数次幂的缺陷及解决办法注:为了简化代码,提高语义,本文将HashMap很多核心代码抽出并根据代码含义为代码片段取名,完全是为了方便读者理解。哈希函…...

06--WXS 脚本

1、简介WXS(WeiXin Script)是小程序的一套脚本语言,结合 WXML ,可以构建出页面的结构。 注意事项WXS 不依赖于运行时的基础库版本,可以在所有版本的小程序中运行。WXS 与 JavaScript 是不同的语言,有自己的…...

【Vue3】vue3 + ts 封装城市选择组件

城市选择-基本功能 能够封装城市选择组件&#xff0c;并且完成基础的显示隐藏的交互功能 &#xff08;1&#xff09;封装通用组件src/components/city/index.vue <script lang"ts" setup name"City"></script> <template><div class…...

C语言if判断语句的三种用法

C if 语句 一个 if 语句 由一个布尔表达式后跟一个或多个语句组成。 语法 C 语言中 if 语句的语法&#xff1a; if(boolean_expression) {/* 如果布尔表达式为真将执行的语句 */ }如果布尔表达式为 true&#xff0c;则 if 语句内的代码块将被执行。如果布尔表达式为 false&…...

React中echarts的封装

做大屏的时候经常会遇到 echarts 展示 在 React &#xff08;^18.2.0&#xff09; 中对 echarts &#xff08;^5.4.0&#xff09; 的简单封装 echarts 封装使用 props 说明 参数说明类型可选值默认值opts初始化传入的 opts https://echarts.apache.org/zh/api.html#echarts…...

IV测试系统3A太阳能模拟器在光伏中应用

一、概述IV测试系统3A太阳能模拟器应具备光束准直、光斑均匀、辐照稳定、且与太阳光谱匹配的特点&#xff0c;使用户可足不出户的完成需要太阳光照条件的测试。科迎法电气提供多规格高品质的太阳模拟器&#xff0c;可适用于单晶硅、多晶硅、非晶硅、染料敏化、有机、钙钛矿等各…...

基于Flask实现的医疗保险欺诈识别监测模型

基于Flask实现的医疗保险欺诈识别监测模型 项目截图 项目简介 社会医疗保险是国家通过立法形式强制实施&#xff0c;由雇主和个人按一定比例缴纳保险费&#xff0c;建立社会医疗保险基金&#xff0c;支付雇员医疗费用的一种医疗保险制度&#xff0c; 它是促进社会文明和进步的…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

大语言模型如何处理长文本?常用文本分割技术详解

为什么需要文本分割? 引言:为什么需要文本分割?一、基础文本分割方法1. 按段落分割(Paragraph Splitting)2. 按句子分割(Sentence Splitting)二、高级文本分割策略3. 重叠分割(Sliding Window)4. 递归分割(Recursive Splitting)三、生产级工具推荐5. 使用LangChain的…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

Android Bitmap治理全解析:从加载优化到泄漏防控的全生命周期管理

引言 Bitmap&#xff08;位图&#xff09;是Android应用内存占用的“头号杀手”。一张1080P&#xff08;1920x1080&#xff09;的图片以ARGB_8888格式加载时&#xff0c;内存占用高达8MB&#xff08;192010804字节&#xff09;。据统计&#xff0c;超过60%的应用OOM崩溃与Bitm…...

接口自动化测试:HttpRunner基础

相关文档 HttpRunner V3.x中文文档 HttpRunner 用户指南 使用HttpRunner 3.x实现接口自动化测试 HttpRunner介绍 HttpRunner 是一个开源的 API 测试工具&#xff0c;支持 HTTP(S)/HTTP2/WebSocket/RPC 等网络协议&#xff0c;涵盖接口测试、性能测试、数字体验监测等测试类型…...

Redis:现代应用开发的高效内存数据存储利器

一、Redis的起源与发展 Redis最初由意大利程序员Salvatore Sanfilippo在2009年开发&#xff0c;其初衷是为了满足他自己的一个项目需求&#xff0c;即需要一个高性能的键值存储系统来解决传统数据库在高并发场景下的性能瓶颈。随着项目的开源&#xff0c;Redis凭借其简单易用、…...

STM32---外部32.768K晶振(LSE)无法起振问题

晶振是否起振主要就检查两个1、晶振与MCU是否兼容&#xff1b;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容&#xff08;CL&#xff09;与匹配电容&#xff08;CL1、CL2&#xff09;的关系 2. 如何选择 CL1 和 CL…...

Spring AI Chat Memory 实战指南:Local 与 JDBC 存储集成

一个面向 Java 开发者的 Sring-Ai 示例工程项目&#xff0c;该项目是一个 Spring AI 快速入门的样例工程项目&#xff0c;旨在通过一些小的案例展示 Spring AI 框架的核心功能和使用方法。 项目采用模块化设计&#xff0c;每个模块都专注于特定的功能领域&#xff0c;便于学习和…...