当前位置: 首页 > news >正文

竞赛 题目:基于深度学习卷积神经网络的花卉识别 - 深度学习 机器视觉

文章目录

  • 0 前言
  • 1 项目背景
  • 2 花卉识别的基本原理
  • 3 算法实现
    • 3.1 预处理
    • 3.2 特征提取和选择
    • 3.3 分类器设计和决策
    • 3.4 卷积神经网络基本原理
  • 4 算法实现
    • 4.1 花卉图像数据
    • 4.2 模块组成
  • 5 项目执行结果
  • 6 最后

0 前言

🔥 优质竞赛项目系列,今天要分享的是

基于深度学习卷积神经网络的花卉识别

该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

1 项目背景

在我国有着成千上万种花卉, 但如何能方便快捷的识别辨识出这些花卉的种类成为了植物学领域的重要研究课题。 我国的花卉研究历史悠久,
是世界上研究较早的国家之一。 花卉是我国重要的物产资源, 除美化了环境, 调养身心外, 它还具有药用价值, 并且在医学领域为保障人们的健康起着重要作用。

花卉识别是植物学领域的一个重要课题, 多年来已经形成一定体系化分类系统,但需要植物学家耗费大量的精力人工分析。 这种方法要求我们首先去了解花卉的生长环境,
近而去研究花卉的整体形态特征。 在观察植株形态特征时尤其是重点观察花卉的花蕊特征、 花卉的纹理颜色和形状及其相关信息等。 然后在和现有的样本进行比对,
最终确定花卉的所属类别。

2 花卉识别的基本原理

花卉种类识别功能实现的主要途径是利用计算机对样本进行分类。 通过对样本的精准分类达到得出图像识别结果的目的。 经典的花卉识别设计如下图 所示,
这几个过程相互关联而又有明显区别。

在这里插入图片描述

3 算法实现

3.1 预处理

预处理是对处于最低抽象级别的图像进行操作的通用名称, 输入和输出均为强度图像。 为了使实验结果更精准, 需要对图像数据进行预处理, 比如,
根据需要增强图像质量、 将图像裁剪成大小一致的形状、 避免不必要的失真等等。

3.2 特征提取和选择

要想获取花卉图像中的最具代表性的隐含信息, 就必须对花卉图像数据集进行相应的变换。

特征提取旨在通过从现有特征中创建新特征(然后丢弃原始特征) 来减少数据集中的特征数量。 然后, 这些新的简化功能集应该能够汇总原始功能集中包含的大多数信息。
这样, 可以从原始集合的组合中创建原始特征的摘要版本。 对所获取的信息实现从测量空间到特征空间的转换。

3.3 分类器设计和决策

构建完整系统的适当分类器组件的任务是使用特征提取器提供的特征向量将对象分配给类别。 由于完美的分类性能通常是不可能实现的,
因此一般的任务是确定每种可能类别的概率。 输入数据的特征向量表示所提供的抽象使得能够开发出在尽可能大程度上与领域无关的分类理论。

在这里插入图片描述
在这里插入图片描述

在设计阶段, 决策功能必须重复多次, 直到错误达到特定条件为止。 分类决策是在分类器设计阶段基于预处理、 特征提取与选择及判决函数建立的模型,
对接收到的样本数据进行归类, 然后输出分类结果。

3.4 卷积神经网络基本原理

卷积神经网络是受到生物学启发的深度学习经典的多层前馈神经网络结构。 是一种在图像分类中广泛使用的机器学习算法。

CNN 的灵感来自我们人类实际看到并识别物体的方式。 这是基于一种方法,即我们眼睛中的神经元细胞只接收到整个对象的一小部分,而这些小块(称为接受场)
被组合在一起以形成整个对象。与其他的人工视觉算法不一样的是 CNN 可以处理特定任务的多个阶段的不变特征。
卷积神经网络使用的并不像经典的人工神经网络那样的全连接层, 而是通过采取局部连接和权值共享的方法, 来使训练的参数量减少, 降低模型的训练复杂度。

CNN 在图像分类和其他识别任务方面已经使传统技术的识别效果得到显著的改善。 由于在过去的几年中卷积网络的快速发展, 对象分类和目标检测能力取得喜人的成绩。

典型的 CNN 含有多个卷积层和池化层, 并具有全连接层以产生任务的最终结果。 在图像分类中, 最后一层的每个单元表示分类概率。

在这里插入图片描述

4 算法实现

4.1 花卉图像数据

花卉图像的获取除了通过用拍摄设备手工收集或是通过网络下载已经整理好的现有数据集, 还可以通过网络爬虫技术收集整理自己的数据集。

在这里插入图片描述

以roses种类的训练数据为例,文件夹内部均为该种类花的图像文件

在这里插入图片描述

4.2 模块组成

示例代码主要由四个模块组成:

  • input_data.py——图像特征提取模块,模块生成四种花的品类图片路径及对应标签的List
  • model.py——模型模块,构建完整的CNN模型
  • train.py——训练模块,训练模型,并保存训练模型结果
  • test.py——测试模块,测试模型对图片识别的准确度

项目模块执行顺序

运行train.py开始训练。
训练完成后- 运行test.py,查看实际测试结果
input_data.py——图像特征提取模块,模块生成四种花的品类图片路径及对应标签的List

import osimport mathimport numpy as npimport tensorflow as tfimport matplotlib.pyplot as plt# -----------------生成图片路径和标签的List------------------------------------train_dir = 'D:/ML/flower/input_data'roses = []label_roses = []tulips = []label_tulips = []dandelion = []label_dandelion = []sunflowers = []label_sunflowers = []**定义函数get_files,获取图片列表及标签列表**# step1:获取所有的图片路径名,存放到# 对应的列表中,同时贴上标签,存放到label列表中。def get_files(file_dir, ratio):for file in os.listdir(file_dir + '/roses'):roses.append(file_dir + '/roses' + '/' + file)label_roses.append(0)for file in os.listdir(file_dir + '/tulips'):tulips.append(file_dir + '/tulips' + '/' + file)label_tulips.append(1)for file in os.listdir(file_dir + '/dandelion'):dandelion.append(file_dir + '/dandelion' + '/' + file)label_dandelion.append(2)for file in os.listdir(file_dir + '/sunflowers'):sunflowers.append(file_dir + '/sunflowers' + '/' + file)label_sunflowers.append(3)# step2:对生成的图片路径和标签List做打乱处理image_list = np.hstack((roses, tulips, dandelion, sunflowers))label_list = np.hstack((label_roses, label_tulips, label_dandelion, label_sunflowers))# 利用shuffle打乱顺序temp = np.array([image_list, label_list])temp = temp.transpose()np.random.shuffle(temp)# 将所有的img和lab转换成listall_image_list = list(temp[:, 0])all_label_list = list(temp[:, 1])# 将所得List分为两部分,一部分用来训练tra,一部分用来测试val# ratio是测试集的比例n_sample = len(all_label_list)n_val = int(math.ceil(n_sample * ratio))  # 测试样本数n_train = n_sample - n_val  # 训练样本数tra_images = all_image_list[0:n_train]tra_labels = all_label_list[0:n_train]tra_labels = [int(float(i)) for i in tra_labels]val_images = all_image_list[n_train:-1]val_labels = all_label_list[n_train:-1]val_labels = [int(float(i)) for i in val_labels]return tra_images, tra_labels, val_images, val_labels**定义函数get_batch,生成训练批次数据**# --------------------生成Batch----------------------------------------------# step1:将上面生成的List传入get_batch() ,转换类型,产生一个输入队列queue,因为img和lab# 是分开的,所以使用tf.train.slice_input_producer(),然后用tf.read_file()从队列中读取图像#   image_W, image_H, :设置好固定的图像高度和宽度#   设置batch_size:每个batch要放多少张图片#   capacity:一个队列最大多少定义函数get_batch,生成训练批次数据def get_batch(image, label, image_W, image_H, batch_size, capacity):# 转换类型image = tf.cast(image, tf.string)label = tf.cast(label, tf.int32)# make an input queueinput_queue = tf.train.slice_input_producer([image, label])label = input_queue[1]image_contents = tf.read_file(input_queue[0])  # read img from a queue# step2:将图像解码,不同类型的图像不能混在一起,要么只用jpeg,要么只用png等。image = tf.image.decode_jpeg(image_contents, channels=3)# step3:数据预处理,对图像进行旋转、缩放、裁剪、归一化等操作,让计算出的模型更健壮。image = tf.image.resize_image_with_crop_or_pad(image, image_W, image_H)image = tf.image.per_image_standardization(image)# step4:生成batch# image_batch: 4D tensor [batch_size, width, height, 3],dtype=tf.float32# label_batch: 1D tensor [batch_size], dtype=tf.int32image_batch, label_batch = tf.train.batch([image, label],batch_size=batch_size,num_threads=32,capacity=capacity)# 重新排列label,行数为[batch_size]label_batch = tf.reshape(label_batch, [batch_size])image_batch = tf.cast(image_batch, tf.float32)return image_batch, label_batch**model.py——CN模型构建**import tensorflow as tf#定义函数infence,定义CNN网络结构#卷积神经网络,卷积加池化*2,全连接*2,softmax分类#卷积层1def inference(images, batch_size, n_classes):with tf.variable_scope('conv1') as scope:weights = tf.Variable(tf.truncated_normal(shape=[3,3,3,64],stddev=1.0,dtype=tf.float32),name = 'weights',dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[64]),name='biases', dtype=tf.float32)conv = tf.nn.conv2d(images, weights, strides=[1, 1, 1, 1], padding='SAME')pre_activation = tf.nn.bias_add(conv, biases)conv1 = tf.nn.relu(pre_activation, name=scope.name)# 池化层1# 3x3最大池化,步长strides为2,池化后执行lrn()操作,局部响应归一化,对训练有利。with tf.variable_scope('pooling1_lrn') as scope:pool1 = tf.nn.max_pool(conv1, ksize=[1, 3, 3, 1], strides=[1, 2, 2, 1], padding='SAME', name='pooling1')norm1 = tf.nn.lrn(pool1, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm1')# 卷积层2# 16个3x3的卷积核(16通道),padding=’SAME’,表示padding后卷积的图与原图尺寸一致,激活函数relu()with tf.variable_scope('conv2') as scope:weights = tf.Variable(tf.truncated_normal(shape=[3, 3, 64, 16], stddev=0.1, dtype=tf.float32),name='weights', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[16]),name='biases', dtype=tf.float32)conv = tf.nn.conv2d(norm1, weights, strides=[1, 1, 1, 1], padding='SAME')pre_activation = tf.nn.bias_add(conv, biases)conv2 = tf.nn.relu(pre_activation, name='conv2')# 池化层2# 3x3最大池化,步长strides为2,池化后执行lrn()操作,# pool2 and norm2with tf.variable_scope('pooling2_lrn') as scope:norm2 = tf.nn.lrn(conv2, depth_radius=4, bias=1.0, alpha=0.001 / 9.0, beta=0.75, name='norm2')pool2 = tf.nn.max_pool(norm2, ksize=[1, 3, 3, 1], strides=[1, 1, 1, 1], padding='SAME', name='pooling2')# 全连接层3# 128个神经元,将之前pool层的输出reshape成一行,激活函数relu()with tf.variable_scope('local3') as scope:reshape = tf.reshape(pool2, shape=[batch_size, -1])dim = reshape.get_shape()[1].valueweights = tf.Variable(tf.truncated_normal(shape=[dim, 128], stddev=0.005, dtype=tf.float32),name='weights', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[128]),name='biases', dtype=tf.float32)local3 = tf.nn.relu(tf.matmul(reshape, weights) + biases, name=scope.name)# 全连接层4# 128个神经元,激活函数relu()with tf.variable_scope('local4') as scope:weights = tf.Variable(tf.truncated_normal(shape=[128, 128], stddev=0.005, dtype=tf.float32),name='weights', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[128]),name='biases', dtype=tf.float32)local4 = tf.nn.relu(tf.matmul(local3, weights) + biases, name='local4')# dropout层#    with tf.variable_scope('dropout') as scope:#        drop_out = tf.nn.dropout(local4, 0.8)# Softmax回归层# 将前面的FC层输出,做一个线性回归,计算出每一类的得分with tf.variable_scope('softmax_linear') as scope:weights = tf.Variable(tf.truncated_normal(shape=[128, n_classes], stddev=0.005, dtype=tf.float32),name='softmax_linear', dtype=tf.float32)biases = tf.Variable(tf.constant(value=0.1, dtype=tf.float32, shape=[n_classes]),name='biases', dtype=tf.float32)softmax_linear = tf.add(tf.matmul(local4, weights), biases, name='softmax_linear')return softmax_linear# -----------------------------------------------------------------------------# loss计算# 传入参数:logits,网络计算输出值。labels,真实值,在这里是0或者1# 返回参数:loss,损失值def losses(logits, labels):with tf.variable_scope('loss') as scope:cross_entropy = tf.nn.sparse_softmax_cross_entropy_with_logits(logits=logits, labels=labels,name='xentropy_per_example')loss = tf.reduce_mean(cross_entropy, name='loss')tf.summary.scalar(scope.name + '/loss', loss)return loss# --------------------------------------------------------------------------# loss损失值优化# 输入参数:loss。learning_rate,学习速率。# 返回参数:train_op,训练op,这个参数要输入sess.run中让模型去训练。def trainning(loss, learning_rate):with tf.name_scope('optimizer'):optimizer = tf.train.AdamOptimizer(learning_rate=learning_rate)global_step = tf.Variable(0, name='global_step', trainable=False)train_op = optimizer.minimize(loss, global_step=global_step)return train_op# -----------------------------------------------------------------------# 评价/准确率计算# 输入参数:logits,网络计算值。labels,标签,也就是真实值,在这里是0或者1。# 返回参数:accuracy,当前step的平均准确率,也就是在这些batch中多少张图片被正确分类了。def evaluation(logits, labels):with tf.variable_scope('accuracy') as scope:correct = tf.nn.in_top_k(logits, labels, 1)correct = tf.cast(correct, tf.float16)accuracy = tf.reduce_mean(correct)tf.summary.scalar(scope.name + '/accuracy', accuracy)return accuracy**train.py——利用D:/ML/flower/input_data/路径下的训练数据,对CNN模型进行训练**import input_dataimport model# 变量声明N_CLASSES = 4  # 四种花类型IMG_W = 64  # resize图像,太大的话训练时间久IMG_H = 64BATCH_SIZE = 20CAPACITY = 200MAX_STEP = 2000  # 一般大于10Klearning_rate = 0.0001  # 一般小于0.0001# 获取批次batchtrain_dir = 'F:/input_data'  # 训练样本的读入路径logs_train_dir = 'F:/save'  # logs存储路径# train, train_label = input_data.get_files(train_dir)train, train_label, val, val_label = input_data.get_files(train_dir, 0.3)# 训练数据及标签train_batch, train_label_batch = input_data.get_batch(train, train_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)# 测试数据及标签val_batch, val_label_batch = input_data.get_batch(val, val_label, IMG_W, IMG_H, BATCH_SIZE, CAPACITY)# 训练操作定义train_logits = model.inference(train_batch, BATCH_SIZE, N_CLASSES)train_loss = model.losses(train_logits, train_label_batch)train_op = model.trainning(train_loss, learning_rate)train_acc = model.evaluation(train_logits, train_label_batch)# 测试操作定义test_logits = model.inference(val_batch, BATCH_SIZE, N_CLASSES)test_loss = model.losses(test_logits, val_label_batch)test_acc = model.evaluation(test_logits, val_label_batch)# 这个是log汇总记录summary_op = tf.summary.merge_all()# 产生一个会话sess = tf.Session()# 产生一个writer来写log文件train_writer = tf.summary.FileWriter(logs_train_dir, sess.graph)# val_writer = tf.summary.FileWriter(logs_test_dir, sess.graph)# 产生一个saver来存储训练好的模型saver = tf.train.Saver()# 所有节点初始化sess.run(tf.global_variables_initializer())# 队列监控coord = tf.train.Coordinator()threads = tf.train.start_queue_runners(sess=sess, coord=coord)# 进行batch的训练try:# 执行MAX_STEP步的训练,一步一个batchfor step in np.arange(MAX_STEP):if coord.should_stop():break_, tra_loss, tra_acc = sess.run([train_op, train_loss, train_acc])# 每隔50步打印一次当前的loss以及acc,同时记录log,写入writerif step % 10 == 0:print('Step %d, train loss = %.2f, train accuracy = %.2f%%' % (step, tra_loss, tra_acc * 100.0))summary_str = sess.run(summary_op)train_writer.add_summary(summary_str, step)# 每隔100步,保存一次训练好的模型if (step + 1) == MAX_STEP:checkpoint_path = os.path.join(logs_train_dir, 'model.ckpt')saver.save(sess, checkpoint_path, global_step=step)except tf.errors.OutOfRangeError:print('Done training -- epoch limit reached')finally:coord.request_stop()**test.py——利用D:/ML/flower/flower_photos/roses路径下的测试数据,查看识别效果**import matplotlib.pyplot as pltimport modelfrom input_data import get_files# 获取一张图片def get_one_image(train):# 输入参数:train,训练图片的路径# 返回参数:image,从训练图片中随机抽取一张图片n = len(train)ind = np.random.randint(0, n)img_dir = train[ind]  # 随机选择测试的图片img = Image.open(img_dir)plt.imshow(img)plt.show()image = np.array(img)return image# 测试图片def evaluate_one_image(image_array):with tf.Graph().as_default():BATCH_SIZE = 1N_CLASSES = 4image = tf.cast(image_array, tf.float32)image = tf.image.per_image_standardization(image)image = tf.reshape(image, [1, 64, 64, 3])logit = model.inference(image, BATCH_SIZE, N_CLASSES)logit = tf.nn.softmax(logit)x = tf.placeholder(tf.float32, shape=[64, 64, 3])# you need to change the directories to yours.logs_train_dir = 'F:/save/'saver = tf.train.Saver()with tf.Session() as sess:print("Reading checkpoints...")ckpt = tf.train.get_checkpoint_state(logs_train_dir)if ckpt and ckpt.model_checkpoint_path:global_step = ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1]saver.restore(sess, ckpt.model_checkpoint_path)print('Loading success, global_step is %s' % global_step)else:print('No checkpoint file found')prediction = sess.run(logit, feed_dict={x: image_array})max_index = np.argmax(prediction)if max_index == 0:result = ('这是玫瑰花的可能性为: %.6f' % prediction[:, 0])elif max_index == 1:result = ('这是郁金香的可能性为: %.6f' % prediction[:, 1])elif max_index == 2:result = ('这是蒲公英的可能性为: %.6f' % prediction[:, 2])else:result = ('这是这是向日葵的可能性为: %.6f' % prediction[:, 3])return result# ------------------------------------------------------------------------if __name__ == '__main__':img = Image.open('F:/input_data/dandelion/1451samples2.jpg')plt.imshow(img)plt.show()imag = img.resize([64, 64])image = np.array(imag)print(evaluate_one_image(image))

5 项目执行结果

执行train模块,结果如下:
在这里插入图片描述
同时,训练结束后,在电脑指定的训练模型存储路径可看到保存的训练好的模型数据。
在这里插入图片描述

执行test模块,结果如下:

在这里插入图片描述
关闭显示的测试图片后,console查看测试结果如下:
在这里插入图片描述

做一个GUI交互界面

在这里插入图片描述

6 最后

🧿 更多资料, 项目分享:

https://gitee.com/dancheng-senior/postgraduate

相关文章:

竞赛 题目:基于深度学习卷积神经网络的花卉识别 - 深度学习 机器视觉

文章目录 0 前言1 项目背景2 花卉识别的基本原理3 算法实现3.1 预处理3.2 特征提取和选择3.3 分类器设计和决策3.4 卷积神经网络基本原理 4 算法实现4.1 花卉图像数据4.2 模块组成 5 项目执行结果6 最后 0 前言 🔥 优质竞赛项目系列,今天要分享的是 基…...

unexpected end of stream on

SpringCloud使用FeignClient调用第三方接口报错unexpected end of stream on ; 解决方法: 1.检查服务器端口是否被占用 lsof -i:端口; 2.nacos添加超时配置:...

【微信小程序篇】- 组件

最近自己在尝试使用AIGC写一个小程序,页面、样式、包括交互函数AIGC都能够帮我完成(不过这里有一点问题AIGC的上下文关联性还是有限制,会经常出现对于需求理解跑偏情况,需要不断的重复强调,并纠正错误,才能得到你想要的…...

使用Sqoop命令从Oracle同步数据到Hive,修复数据乱码 %0A的问题

一、创建一张Hive测试表 create table test_oracle_hive(id_code string,phone_code string,status string,create_time string ) partitioned by(partition_date string) ROW FORMAT DELIMITED FIELDS TERMINATED BY ,; 创建分区字段partition_date&#xff0c…...

NC Cloud uploadChunk文件上传漏洞复现

简介 NC Cloud是指用友公司推出的大型企业数字化平台。支持公有云、混合云、专属云的灵活部署模式。该产品uploadChunk文件存在任意文件上传漏洞。 漏洞复现 FOFA语法: app"用友-NC-Cloud" 访问页面如下所示: POC:/ncchr/pm/fb/…...

多标签页之间的通信

解决方案有两种思路&#xff1a;浏览器端解决方案、服务器端解决方案。 一、浏览器端解决方案&#xff1a; 思路&#xff1a;本地数据存储 <!-- index01.html --> <input id"name"> <input type"button" id"btn" value"…...

CI/CD -gitlab

目录 一、常用命令 二、部署 一、常用命令 官网&#xff1a;https://about.gitlab.com/install/ gitlab-ctl start # 启动所有 gitlab 组件 gitlab-ctl stop # 停止所有 gitlab 组件 gitlab-ctl restart # 重启所有 gitlab 组件 gitlab-ctl statu…...

AR眼镜_单目光波导VS双目光波导方案

双目光波导AR眼镜方案是一种创新的智能设备&#xff0c;可以在现实场景中叠加虚拟信息&#xff0c;提供增强的视觉体验和交互体验。光学显示方案是AR眼镜的核心技术之一&#xff0c;它对眼镜的性能和使用体验起着决定性的作用。 相比于单目AR眼镜&#xff0c;双目AR眼镜具有更好…...

golang 动态库 (buildmode)

目录 1. golang 动态库2. Golang 生成 C 动态库 .so 和静态库 .a2.1. 源代码2.2. 编译2.3. C2.4. 执行2.5. 如何生成静态库2.6. Go 调用 C 库2.6.1. 源代码 3. golang 语言使用动态库、调用动态链接库3.1. Go 插件系统3.2. 动态加载的优劣3.3. Go 的插件系统: Plugin3.4. 插件开…...

【mysql】2006 - Server has gone away

执行了一组插入语句 提示&#xff1a;2006 - Server has gone away&#xff1b; 2006-服务器已经消失&#xff1b; 消失去哪里了&#xff0c;被黑洞吞没了吗&#xff1f;&#xff01;&#xff01;&#xff01; 网络问题 网络不稳定&#xff1f;断网了&#xff1f;检查网络连…...

动态规划43(Leetcode91解码方法)

代码&#xff1a; class Solution {public int numDecodings(String s) {int n s.length();if(s.charAt(0)0)return 0;if(n1)return 1;int[] dp new int[n1];dp[0]1;dp[1]1;for(int i2;i<n;i){if(s.charAt(i-2)1){dp[i]dp[i-2];}else if(s.charAt(i-2)2&&s.charA…...

STM32电源名词解析

先来简单了解一下各种电源端口的命名 VCC&#xff1a;Ccircuit 表示电路的意思, 即接入电路的电压 VDD&#xff1a;Ddevice 表示器件的意思, 即器件内部的工作电压。 VSS&#xff1a;Sseries 表示公共连接的意思&#xff0c;通常指电路公共接地端电压。 GND&#xff1a;在电…...

openAI宫斗感想 chatGPT带给客户巨大利益的就是王者。王者终究会归来。技术人员不要总是想掌握所有核心技术并用到极致。

1.我很喜欢乔布斯用的iCEO&#xff0c;每个人的工作都是临时的&#xff0c;打掉铁饭碗才会有效率。有铁饭碗就容易使人怠慢、傲慢、嚣张、低效率的消耗自己和别人的生命。日本人为什么对每个人每个客户都毕恭毕敬&#xff0c;感觉因为他的饭碗都掌握在周围的人手里。 日本文化…...

驱动程序无法通过使用安全套接字层(SSL)加密与 SQL Server 建立安全连接

参考&#xff1a;https://www.cnblogs.com/sam-snow-v/p/15917898.html eclipse链接SQL Server出现问题 笔者使用Open JDK 17&#xff0c;SQL Server 2016&#xff0c;项目中使用JPA操作数据库。测试环境没问题&#xff0c;生产环境出现如题所示“驱动程序无法通过使用安全套接…...

性能调优第一步:服务器硬件如何选型

硬件选型是调优的第一步&#xff0c;无论你是自行购买服务器进行托管&#xff0c;还是租用服务器&#xff0c;或者购买云主机&#xff0c;都要面临的一个问题&#xff0c;那就是选择服务器的硬件配置&#xff0c;因为没有一台服务器能满足所有需求&#xff0c;解决所有的问题。…...

Codewhisperer 使用评价

最近亚⻢逊推出了一款基于机器学习的 AI 编程助手 Amazon CodeWhisperer&#xff0c;可以实时提供代码建议。在编写代码时&#xff0c;它会自动根据现有的代码和注释给出建议。Amazon CodeWhisperer 与GitHub Copilot类似&#xff0c;主要的功能有: 代码补全注释和文档补全代码…...

结合scss实现黑白主题切换

是看了袁老师的视频后&#xff0c;自己做了一下练习。原视频地址&#xff1a; b站地址https://www.bilibili.com/video/BV15z4y1N7jB/?spm_id_from333.1007.top_right_bar_window_history.content.click&vd_sourcec6cf63302f28d94ebc02cbedcecc57ea首先创建一个全局的scs…...

go-zero对数据库的操作

一、go-zerro中结合gorm来操作mysql数据库 1、这里我这就直接结合gorm-gen的方式来实现数据库操作,关于gorm-gen可以参考官网 2、创建一个数据库&#xff0c;并且创建一个表 -- ------------------------ -- 用户表 -- ------------------------ DROP TABLE IF EXISTS user; C…...

Mac git查看分支以及切换分支

查看本地分支 git branch 查看远程仓库分支 git branch -r 查看本地与远程仓库分支 git branch -a 切换分支 git checkout origin/dev/js...

Qt调起Mac“系统设置”面板

mac系统设置相关字段&#xff1a; Accessibility 面板相关 项目 URL Scheme Main x-apple.systempreferences:com.apple.preference.universalaccess Display x-apple.systempreferences:com.apple.preference.universalaccess?Seeing_Display Zoom x-apple.systempreference…...

挑战杯推荐项目

“人工智能”创意赛 - 智能艺术创作助手&#xff1a;借助大模型技术&#xff0c;开发能根据用户输入的主题、风格等要求&#xff0c;生成绘画、音乐、文学作品等多种形式艺术创作灵感或初稿的应用&#xff0c;帮助艺术家和创意爱好者激发创意、提高创作效率。 ​ - 个性化梦境…...

手游刚开服就被攻击怎么办?如何防御DDoS?

开服初期是手游最脆弱的阶段&#xff0c;极易成为DDoS攻击的目标。一旦遭遇攻击&#xff0c;可能导致服务器瘫痪、玩家流失&#xff0c;甚至造成巨大经济损失。本文为开发者提供一套简洁有效的应急与防御方案&#xff0c;帮助快速应对并构建长期防护体系。 一、遭遇攻击的紧急应…...

工业安全零事故的智能守护者:一体化AI智能安防平台

前言&#xff1a; 通过AI视觉技术&#xff0c;为船厂提供全面的安全监控解决方案&#xff0c;涵盖交通违规检测、起重机轨道安全、非法入侵检测、盗窃防范、安全规范执行监控等多个方面&#xff0c;能够实现对应负责人反馈机制&#xff0c;并最终实现数据的统计报表。提升船厂…...

2025年能源电力系统与流体力学国际会议 (EPSFD 2025)

2025年能源电力系统与流体力学国际会议&#xff08;EPSFD 2025&#xff09;将于本年度在美丽的杭州盛大召开。作为全球能源、电力系统以及流体力学领域的顶级盛会&#xff0c;EPSFD 2025旨在为来自世界各地的科学家、工程师和研究人员提供一个展示最新研究成果、分享实践经验及…...

Cesium1.95中高性能加载1500个点

一、基本方式&#xff1a; 图标使用.png比.svg性能要好 <template><div id"cesiumContainer"></div><div class"toolbar"><button id"resetButton">重新生成点</button><span id"countDisplay&qu…...

安宝特方案丨XRSOP人员作业标准化管理平台:AR智慧点检验收套件

在选煤厂、化工厂、钢铁厂等过程生产型企业&#xff0c;其生产设备的运行效率和非计划停机对工业制造效益有较大影响。 随着企业自动化和智能化建设的推进&#xff0c;需提前预防假检、错检、漏检&#xff0c;推动智慧生产运维系统数据的流动和现场赋能应用。同时&#xff0c;…...

Caliper 配置文件解析:config.yaml

Caliper 是一个区块链性能基准测试工具,用于评估不同区块链平台的性能。下面我将详细解释你提供的 fisco-bcos.json 文件结构,并说明它与 config.yaml 文件的关系。 fisco-bcos.json 文件解析 这个文件是针对 FISCO-BCOS 区块链网络的 Caliper 配置文件,主要包含以下几个部…...

vue3+vite项目中使用.env文件环境变量方法

vue3vite项目中使用.env文件环境变量方法 .env文件作用命名规则常用的配置项示例使用方法注意事项在vite.config.js文件中读取环境变量方法 .env文件作用 .env 文件用于定义环境变量&#xff0c;这些变量可以在项目中通过 import.meta.env 进行访问。Vite 会自动加载这些环境变…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

C++.OpenGL (14/64)多光源(Multiple Lights)

多光源(Multiple Lights) 多光源渲染技术概览 #mermaid-svg-3L5e5gGn76TNh7Lq {font-family:"trebuchet ms",verdana,arial,sans-serif;font-size:16px;fill:#333;}#mermaid-svg-3L5e5gGn76TNh7Lq .error-icon{fill:#552222;}#mermaid-svg-3L5e5gGn76TNh7Lq .erro…...