【目标测距】雷达投影测距
文章目录
- 前言
- 一、读取点云
- 二、点云投影图片
- 三、读取检测信息
- 四、点云投影测距
- 五、学习交流
前言
- 雷达点云投影相机。图片目标检测,通过检测框约束等等对目标赋予距离。
- 计算消耗较大,适合离线验证操作。在线操作可以只投影雷达检测框。
一、读取点云
- python 读取点云,我这里用的是 open3d 这个库。
import open3d as o3dpcd_path = "1.pcd"
pcd = o3d.io.read_point_cloud(pcd_path) # 点云
二、点云投影图片
- 明白标定原理,这部分就很简单,就是一个矩阵运算。投影像素误差多少与传感器标定强相关。
- 下面代码中 mtx:相机内参 r_camera_to_lidar_inv:相机到雷达的旋转矩阵的逆矩阵 t_camera_to_lidar:相机到雷达的平移向量
import open3d as o3d
import numpy as np
import cv2color_label = [(255, 0, 0), (121, 68, 222), (0, 0, 255), (0, 255, 0), (199, 199, 53)] # 红黄蓝绿青# 不同距显示不同颜色
def get_color(distance):for i in range(2, 50):if i < distance < i + 1:return color_label[i % len(color_label)]return color_label[0]pcd_path = "1.pcd"
pcd = o3d.io.read_point_cloud(pcd_path) # 点云
image = cv2.imread("1.jpg")cloud = np.asarray(pcd.points)
for point in cloud:camera_coordinate = np.dot(mtx, np.dot(r_camera_to_lidar_inv, point.reshape(3, 1) - t_camera_to_lidar))pixe_coordinate = camera_coordinate / camera_coordinate[2]x_pixe, y_pixe, _ = pixe_coordinatecv2.circle(image, (int(x_pixe), int(y_pixe)), 1, get_color(camera_coordinate[2]), 2)
三、读取检测信息
- 图像目标检测信息保存在txt文件。格式: frame , x_center , y_cente , width , height , score。
import numpy as npdef GetDetFrameRes(seq_dets, frame):detects = seq_dets[(seq_dets[:, 0] == frame) & (seq_dets[:, 5] <= 6), 1:6]detects[:, 0:2] -= detects[:, 2:4] / 2 # convert to [x中心,y中心,w,h] to [x左上,y左上,w,h]detects[:, 2:4] += detects[:, 0:2] # convert to [x左上,y左上,w,h] to [x左上,y左上,x右下,y右下]return detectsdet_dir = "result.txt"
det_data = np.loadtxt(det_dir, delimiter=',')
# 假如有100帧图片
for i in range(100):dets_frame = GetDetFrameRes(det_data, i) # 获取第i帧检测结果
四、点云投影测距
- 判断点云是否在图像目标检测框内。
- 对于图片目标检测框有重复的情况,需要对目标检测框进行排列,距离靠前的检测框优先计算。
- 选取点云中 x 最小的为目标的距离,y 距离取目标框内平均值
import os
import cv2
import yaml
import numpy as np
import open3d as o3d
from datetime import datetimedef read_yaml(path):with open(path, 'r', encoding='utf-8') as f:result = yaml.load(f.read(), Loader=yaml.FullLoader)camera_mtx = result["camera"]["front_center"]["K"]r_camera = result["camera"]["front_center"]["rotation"]t_camera = result["camera"]["front_center"]["translation"]lidar_to_car = result["lidar"]["top_front"]["coordinate_transfer"]c_m = np.array([camera_mtx]).reshape(3, 3)r_c = np.array([r_camera]).reshape(3, 3)t_c = np.array([t_camera]).reshape(3, 1)l_c = np.array([lidar_to_car]).reshape(4, 4)return c_m, r_c, t_c, l_cdef get_box_color(index):color_list = [(96, 48, 176), (105, 165, 218), (18, 153, 255)]return color_list[index % len(color_list)]# 不同距显示不同颜色
def get_color(distance):for i in range(2, 50):if i < distance < i + 1:return color_label[i % len(color_label)]return color_label[0]def GetDetFrameRes(seq_dets, frame):detects = seq_dets[(seq_dets[:, 0] == frame) & (seq_dets[:, 5] <= 6), 1:6]detects[:, 0:2] -= detects[:, 2:4] / 2 # convert to [x中心,y中心,w,h] to [x左上,y左上,w,h]detects[:, 2:4] += detects[:, 0:2] # convert to [x左上,y左上,w,h] to [x左上,y左上,x右下,y右下]return detects# 点云投影到图片
def point_to_image(image_path, pcd_point, det_data, show=False):cloud = np.asarray(pcd_point.points)image = cv2.imread(image_path)det_data = det_data[np.argsort(det_data[:, 3])[::-1]]n = len(det_data)point_dict = {i: [] for i in range(n)}for point in cloud:if 2 < point[0] < 100 and -30 < point[1] < 30:camera_coordinate = np.dot(mtx, np.dot(r_camera_to_lidar_inv, point.reshape(3, 1) - t_camera_to_lidar))pixe_coordinate = camera_coordinate / camera_coordinate[2]x_pixe, y_pixe, _ = pixe_coordinate# 判断一个点是否在检测框里面idx = np.argwhere((x_pixe >= det_data[:, 0]) & (x_pixe <= det_data[:, 2]) &(y_pixe >= det_data[:, 1]) & (y_pixe <= det_data[:, 3])).reshape(-1)if list(idx):index = int(idx[0])cv2.circle(image, (int(x_pixe), int(y_pixe)), 1, get_box_color(index), 2)point_dict[index].append([point[0], point[1]])for i in range(n):cv2.rectangle(image, (int(det_data[i][0]), int(det_data[i][1])), (int(det_data[i][2]), int(det_data[i][3])),get_box_color(int(det_data[i][4])), 2) # 不同类别画不同颜色框np_data = np.array(point_dict[i])if len(np_data) < 3:continuex = np.min(np_data[:, 0])min_index = np.argmin(np_data, axis=0)y = np.average(np_data[min_index, 1])cv2.putText(image, '{},{}'.format(round(x, 1), round(y, 1)), (int(det_data[i][0]), int(det_data[i][1]) - 10),cv2.FONT_HERSHEY_COMPLEX, 1, get_box_color(int(det_data[i][4])), 2)video.write(image)if show:cv2.namedWindow("show", 0)cv2.imshow("show", image)cv2.waitKey(0)def main():pcd_file_paths = os.listdir(pcd_dir)img_file_paths = os.listdir(img_dir)len_diff = max(0, len(pcd_file_paths) - len(img_file_paths))img_file_paths.sort(key=lambda x: float(x[:-4]))pcd_file_paths.sort(key=lambda x: float(x[:-4]))pcd_file_paths = [pcd_dir + x for x in pcd_file_paths]img_file_paths = [img_dir + x for x in img_file_paths]det_data = np.loadtxt(det_dir, delimiter=',')for i in range(min(len(img_file_paths), len(pcd_file_paths))):pcd = o3d.io.read_point_cloud(pcd_file_paths[i + len_diff]) # 点云now = datetime.now()dets_frame = GetDetFrameRes(det_data, i)point_to_image(img_file_paths[i], pcd, dets_frame, show=show)print(i, datetime.now() - now)video.release()if __name__ == '__main__':color_label = [(255, 0, 0), (121, 68, 222), (0, 0, 255), (0, 255, 0), (199, 199, 53)] # 红黄蓝绿青path = "F:\\data\\"pcd_dir = path + "lidar_points\\" # 点云文件夹绝对路径img_dir = path + "image_raw\\" # 图片文件夹绝对路径det_dir = path + "result.txt" # 目标检测信息video_dir = path + "point_img4.mp4"video = cv2.VideoWriter(video_dir, cv2.VideoWriter_fourcc('m', 'p', '4', 'v'), 10, (1920, 1080)) # 保存视频cali_dir = "sensor.yaml"mtx, r_camera, t_camera, lidar_to_car = read_yaml(cali_dir)r_lidar, t_lidar = lidar_to_car[:3, :3], lidar_to_car[:3, -1].reshape(3, 1)r_camera_to_lidar = np.linalg.inv(r_lidar) @ r_camerar_camera_to_lidar_inv = np.linalg.inv(r_camera_to_lidar)t_camera_to_lidar = np.linalg.inv(r_lidar) @ (t_camera - t_lidar) # 前相机,主雷达标定结果show = Truemain()
五、学习交流
有任何疑问可以私信我,欢迎交流学习。
相关文章:

【目标测距】雷达投影测距
文章目录 前言一、读取点云二、点云投影图片三、读取检测信息四、点云投影测距五、学习交流 前言 雷达点云投影相机。图片目标检测,通过检测框约束等等对目标赋予距离。计算消耗较大,适合离线验证操作。在线操作可以只投影雷达检测框。 一、读取点云 py…...
uniapp、小程序canvas相关
1、圆形or圆形头像 //示例 const ctx uni.createCanvasContext(myCanvas); //canvas const round uni.upx2px(72) / 2; // 半径 const x uni.upx2px(92); //目标x轴位置 const y uni.upx2px(236); //目标y轴位置//if 图片是不是静态资源 async > const imgSrc https:/…...

[工业自动化-23]:西门子S7-15xxx编程 - 软件编程 - 西门子PLC人机界面交互HMI功能概述、硬件环境准备、软件环境准备
目录 一、什么是人机界面 二、什么是PLC人机交互界面HMI 三、人机界面设计的功能列表 四、开发主机与PLC的连接方式 五、开发主机与HMI的连接方式 六、HMI组态 一、什么是人机界面 人机界面是指人与机器或系统之间的交互界面。它是人类与计算机或其他设备之间进行信息交换…...

在Ubuntu系统中安装VNC并结合内网穿透实现公网远程访问
🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…...

java基础练习缺少项目?看这篇文章就够了(上)!
公众号:全干开发 。 专注分享简洁但高质量的动图技术文章! 项目概述 本教程适合刚学习完java基础语法的同学,涉及if语句、循环语句、类的封装、集合等基础概念,使用大量gif图帮助读者演示代码操作、效果等,是一个非常…...
鸿蒙为什么使用typescript 作为开发语言 而不是 flutter 或者 kotlin
猜想如下 dev studio 是基于 idea 二次开发的 ,使用kotlin 应该是更合理 变成 jetbrain 全家桶, 但是 现在android 开发也是kotlin 是不是为了做分割 ,所以不使用kotlin flutter 是谷歌的 安卓也是谷歌的 所以不采用 typescript 是微软的…...

Flutter NestedScrollView 、SliverAppBar全解析,悬浮菜单的应用
在我们开发过程中经常会使用到悬浮菜单的使用,当我们滑动到指定位置后,菜单会自动悬浮。 实现效果如下(左为滑动前、右为滑动后): 上述便是通过NestedScrollView 、SliverAppBar实现的效果,通过两个控件我…...
Mongodb 副本集名称重命名
副本集重命名 要重命名副本集,您必须关闭副本集的所有成员,然后使用新的副本集名称配置每个成员的数据库。 此过程需要停机。 先决条件 确保您的副本集未分片。重命名过程仅适用于未分片的副本集。 在重命名副本集之前,请 对 MongoDB 部…...
C#WPF属性触发器实例
本文讲解C#WPF属性触发器的实例 在属性触发器中,当一个属性发生更改时,它将立即或动画更改另一个属性 实例 <Windowx:Class="TriggerDemo.MainWindow"xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x="http://sch…...

Kotlin 核心语法,为什么选择Kotlin ?
Kotlin 是一个基于 JVM 的新的编程语言,由 JetBrains 开发。与Java相比,Kotlin的语法更简洁、更具表达性,而且提供了更多的特性。 Kotlin是使用Java开发者的思维被创建的,Intellij作为它主要的开发IDE。对于 Android开发者&#…...

SpringCloud微服务:Nacos的集群、负载均衡、环境隔离
目录 集群 在user-service的yml文件配置集群 启动服务 负载均衡 order-service配置集群 设置负载均衡 当本地集群的服务挂掉时 访问权重 环境隔离 1、Nacos服务分级存储模型 一级是服务,例如userservice 二级是集群,例如杭州或上海 …...

Selenium+Python做web端自动化测试框架实战
最近受到万点暴击,由于公司业务出现问题,工作任务没那么繁重,有时间摸索seleniumpython自动化测试,结合网上查到的资料自己编写出适合web自动化测试的框架,由于本人也是刚刚开始学习python,这套自动化框架目…...

Linux:安装MySQL服务(非docker方式)
1、下载安装包 下载MySQL安装包,需要Oracle官网的账号 下面是网友提供的账号及密码,亲测有效。 账户:3028064308qq.com 我用的这个,可以登陆 密码:OraclePassword123!Oracle Account: 602205528qq.com Oracle Pass…...
C++实现有理数类 四则运算和输入输出
面试 C 程序员,什么样的问题是好问题? - 知乎 https://www.cnblogs.com/bwjblogs/p/12982908.html...

小鸟飞呀飞
欢迎来到程序小院 小鸟飞呀飞 玩法:鼠标控制小鸟飞翔的方向,点击鼠标左键上升,不要让小鸟掉落,从管道中经过,快去飞呀飞哦^^。开始游戏https://www.ormcc.com/play/gameStart/204 html <canvas width"288&quo…...

Unity 场景烘培 ——unity Post-Processing后处理1(四)
提示:文章有错误的地方,还望诸位大神不吝指教! 文章目录 前言一、Post-Processing是什么?二、安装使用Post-Processing1.安装Post-Processing2.使用Post-Processing(1).添加Post-process Volume(…...

Burpsuite抓HTTPS证书导入问题
Burpsuite证书导出有两种方法: 第一种方法 1、开启代理后直接在浏览器中输入burp下载CA证书 2、在中间证书颁发机构中导入刚导出的证书 3、导入完成后再把这个证书选择导出,另存为cer格式的文件 4、在受信任的根证书颁发机构中导入刚保存的cer格式证书…...
python保存文件到zip压缩包中
这里我们使用zipfile这个库进行操作,保存压缩文件相对简单,只需要指定文件名即可,不需要读取那个文件: with zipfile.ZipFile("zip文件路径", mode, zipfile.ZIP_DEFLATED) as z:z.write("压缩源文件路径", …...
java发送媒体类型为multipart/form-data的请求
文章目录 public static String sendMultipartFormDataPostRequest(String urlString, String data) throws IOException {String fullUrl urlString "?" data;log.info("完整请求路径为{}", fullUrl);URL url new URL(fullUrl);HttpURLConnection co…...

自定义类使用ArrayList中的remove
Java中ArrayList对基础类型和字符串类型的删除操作,直接用remove方法即可。但是对于自定义的类来说,用remove方法删除不了,因为没有办法确定是否是要删除的对象。 ArrayList中remove源码是: public boolean remove(Object o) {if…...
虚拟主机都有哪些应用场景?
虚拟主机作为一种高效的网络托管方案,已经逐渐成为企业构建网站和应用软件的重要选择,下面,小编将为大家介绍一下虚拟主机的应用场景都有哪些吧! 虚拟主机可以帮助企业建立属于自己的企业网站,是用来展示公司形象和服务…...
Qwen大语言模型里,<CLS>属于特殊的标记:Classification Token
Qwen大语言模型里,<CLS>属于特殊的标记:Classification Token 目录 Qwen大语言模型里,<CLS>属于特殊的标记:Classification Token功能解析工作机制应用场景举例说明技术要点在自然语言处理(NLP)领域 都是<CLS> + <SEP>吗?一、CLS和SEP的作用与常见用法1. **CLS标…...
ReLU 新生:从死亡困境到强势回归
背景 在深度学习领域,激活函数的探索已成为独立研究课题。诸如 GELU、SELU 和 SiLU 等新型激活函数,因具备平滑梯度与出色的收敛特性,正备受关注。经典 ReLU 凭借简洁性、固有稀疏性及其独特优势拓扑特性,依旧受青睐。然而&#…...

解决数据库重启问题
最近部署软件时,发现mysql会一直在重启,记录下解决办法: 1.删除/home/dataexa/install/docker/datas/mysql路径下的data文件夹 2.重新构建mysql docker-compose up -d --build mysql 3.停掉所有应用,在全部重启: do…...

drawio 开源免费的流程图绘制
开源地址 docker-compose 一键启动 #This compose file adds draw.io to your stack version: 3.5 services:drawio:image: jgraph/drawiocontainer_name: drawiorestart: unless-stoppedports:- 8081:8080- 8443:8443environment:PUBLIC_DNS: domainORGANISATION_UNIT: unitOR…...

实现单例模式的常见方式
前言 java有多种设计模式,如下图所示: 单例模式它确保一个类只有一个实例,并提供一个全局访问点。 1、单例模式介绍 1.1、使用原因 为什么要使用单例模式? 1. 控制资源访问 核心价值:确保对共享资源(如…...
惠普HP Deskjet 9600 打印机信息
基本参数 产品定位:彩色喷墨打印机。打印速度:14 页 / 分钟。最高分辨率:48001200dpi。打印内存:8MB4。打印语言:HP PCL 3 增强型。打印负荷:每月 5000 页。接口类型:USB、并口。 功能特点 自动…...
RetroMAE 预训练任务
RetroMAE 预训练任务的具体步骤,围绕 编码(Encoding)、解码(Decoding)、增强解码(Enhanced decoding) 三个核心阶段展开,以下结合图中流程拆解: 一、阶段 A:…...

STM32:CAN总线精髓:特性、电路、帧格式与波形分析详解
声明:此博客是我的学习笔记,所看课程是江协科技的CAN总线课程,知识点都大同小异,我仅进行总结并加上了我自己的理解,所引案例也都是课程中的案例,希望对你的理解有所帮助! 知识点1【CAN总线的概…...

学习日记-day23-6.6
完成目标: 知识点: 1.IO流_转换流使用 ## 转换流_InputStreamReader1.字节流读取中文在编码一致的情况,也不要边读边看,因为如果字节读不准,读不全,输出的内容有可能会出现乱码 2.所以,我们学了字符流,字符流读取文本文档中的内容如果编码一致,就不会出…...