【目标测距】雷达投影测距
文章目录
- 前言
- 一、读取点云
- 二、点云投影图片
- 三、读取检测信息
- 四、点云投影测距
- 五、学习交流
前言
- 雷达点云投影相机。图片目标检测,通过检测框约束等等对目标赋予距离。
- 计算消耗较大,适合离线验证操作。在线操作可以只投影雷达检测框。
一、读取点云
- python 读取点云,我这里用的是 open3d 这个库。
import open3d as o3dpcd_path = "1.pcd"
pcd = o3d.io.read_point_cloud(pcd_path) # 点云
二、点云投影图片
- 明白标定原理,这部分就很简单,就是一个矩阵运算。投影像素误差多少与传感器标定强相关。
- 下面代码中 mtx:相机内参 r_camera_to_lidar_inv:相机到雷达的旋转矩阵的逆矩阵 t_camera_to_lidar:相机到雷达的平移向量
import open3d as o3d
import numpy as np
import cv2color_label = [(255, 0, 0), (121, 68, 222), (0, 0, 255), (0, 255, 0), (199, 199, 53)] # 红黄蓝绿青# 不同距显示不同颜色
def get_color(distance):for i in range(2, 50):if i < distance < i + 1:return color_label[i % len(color_label)]return color_label[0]pcd_path = "1.pcd"
pcd = o3d.io.read_point_cloud(pcd_path) # 点云
image = cv2.imread("1.jpg")cloud = np.asarray(pcd.points)
for point in cloud:camera_coordinate = np.dot(mtx, np.dot(r_camera_to_lidar_inv, point.reshape(3, 1) - t_camera_to_lidar))pixe_coordinate = camera_coordinate / camera_coordinate[2]x_pixe, y_pixe, _ = pixe_coordinatecv2.circle(image, (int(x_pixe), int(y_pixe)), 1, get_color(camera_coordinate[2]), 2)
三、读取检测信息
- 图像目标检测信息保存在txt文件。格式: frame , x_center , y_cente , width , height , score。
import numpy as npdef GetDetFrameRes(seq_dets, frame):detects = seq_dets[(seq_dets[:, 0] == frame) & (seq_dets[:, 5] <= 6), 1:6]detects[:, 0:2] -= detects[:, 2:4] / 2 # convert to [x中心,y中心,w,h] to [x左上,y左上,w,h]detects[:, 2:4] += detects[:, 0:2] # convert to [x左上,y左上,w,h] to [x左上,y左上,x右下,y右下]return detectsdet_dir = "result.txt"
det_data = np.loadtxt(det_dir, delimiter=',')
# 假如有100帧图片
for i in range(100):dets_frame = GetDetFrameRes(det_data, i) # 获取第i帧检测结果
四、点云投影测距
- 判断点云是否在图像目标检测框内。
- 对于图片目标检测框有重复的情况,需要对目标检测框进行排列,距离靠前的检测框优先计算。
- 选取点云中 x 最小的为目标的距离,y 距离取目标框内平均值
import os
import cv2
import yaml
import numpy as np
import open3d as o3d
from datetime import datetimedef read_yaml(path):with open(path, 'r', encoding='utf-8') as f:result = yaml.load(f.read(), Loader=yaml.FullLoader)camera_mtx = result["camera"]["front_center"]["K"]r_camera = result["camera"]["front_center"]["rotation"]t_camera = result["camera"]["front_center"]["translation"]lidar_to_car = result["lidar"]["top_front"]["coordinate_transfer"]c_m = np.array([camera_mtx]).reshape(3, 3)r_c = np.array([r_camera]).reshape(3, 3)t_c = np.array([t_camera]).reshape(3, 1)l_c = np.array([lidar_to_car]).reshape(4, 4)return c_m, r_c, t_c, l_cdef get_box_color(index):color_list = [(96, 48, 176), (105, 165, 218), (18, 153, 255)]return color_list[index % len(color_list)]# 不同距显示不同颜色
def get_color(distance):for i in range(2, 50):if i < distance < i + 1:return color_label[i % len(color_label)]return color_label[0]def GetDetFrameRes(seq_dets, frame):detects = seq_dets[(seq_dets[:, 0] == frame) & (seq_dets[:, 5] <= 6), 1:6]detects[:, 0:2] -= detects[:, 2:4] / 2 # convert to [x中心,y中心,w,h] to [x左上,y左上,w,h]detects[:, 2:4] += detects[:, 0:2] # convert to [x左上,y左上,w,h] to [x左上,y左上,x右下,y右下]return detects# 点云投影到图片
def point_to_image(image_path, pcd_point, det_data, show=False):cloud = np.asarray(pcd_point.points)image = cv2.imread(image_path)det_data = det_data[np.argsort(det_data[:, 3])[::-1]]n = len(det_data)point_dict = {i: [] for i in range(n)}for point in cloud:if 2 < point[0] < 100 and -30 < point[1] < 30:camera_coordinate = np.dot(mtx, np.dot(r_camera_to_lidar_inv, point.reshape(3, 1) - t_camera_to_lidar))pixe_coordinate = camera_coordinate / camera_coordinate[2]x_pixe, y_pixe, _ = pixe_coordinate# 判断一个点是否在检测框里面idx = np.argwhere((x_pixe >= det_data[:, 0]) & (x_pixe <= det_data[:, 2]) &(y_pixe >= det_data[:, 1]) & (y_pixe <= det_data[:, 3])).reshape(-1)if list(idx):index = int(idx[0])cv2.circle(image, (int(x_pixe), int(y_pixe)), 1, get_box_color(index), 2)point_dict[index].append([point[0], point[1]])for i in range(n):cv2.rectangle(image, (int(det_data[i][0]), int(det_data[i][1])), (int(det_data[i][2]), int(det_data[i][3])),get_box_color(int(det_data[i][4])), 2) # 不同类别画不同颜色框np_data = np.array(point_dict[i])if len(np_data) < 3:continuex = np.min(np_data[:, 0])min_index = np.argmin(np_data, axis=0)y = np.average(np_data[min_index, 1])cv2.putText(image, '{},{}'.format(round(x, 1), round(y, 1)), (int(det_data[i][0]), int(det_data[i][1]) - 10),cv2.FONT_HERSHEY_COMPLEX, 1, get_box_color(int(det_data[i][4])), 2)video.write(image)if show:cv2.namedWindow("show", 0)cv2.imshow("show", image)cv2.waitKey(0)def main():pcd_file_paths = os.listdir(pcd_dir)img_file_paths = os.listdir(img_dir)len_diff = max(0, len(pcd_file_paths) - len(img_file_paths))img_file_paths.sort(key=lambda x: float(x[:-4]))pcd_file_paths.sort(key=lambda x: float(x[:-4]))pcd_file_paths = [pcd_dir + x for x in pcd_file_paths]img_file_paths = [img_dir + x for x in img_file_paths]det_data = np.loadtxt(det_dir, delimiter=',')for i in range(min(len(img_file_paths), len(pcd_file_paths))):pcd = o3d.io.read_point_cloud(pcd_file_paths[i + len_diff]) # 点云now = datetime.now()dets_frame = GetDetFrameRes(det_data, i)point_to_image(img_file_paths[i], pcd, dets_frame, show=show)print(i, datetime.now() - now)video.release()if __name__ == '__main__':color_label = [(255, 0, 0), (121, 68, 222), (0, 0, 255), (0, 255, 0), (199, 199, 53)] # 红黄蓝绿青path = "F:\\data\\"pcd_dir = path + "lidar_points\\" # 点云文件夹绝对路径img_dir = path + "image_raw\\" # 图片文件夹绝对路径det_dir = path + "result.txt" # 目标检测信息video_dir = path + "point_img4.mp4"video = cv2.VideoWriter(video_dir, cv2.VideoWriter_fourcc('m', 'p', '4', 'v'), 10, (1920, 1080)) # 保存视频cali_dir = "sensor.yaml"mtx, r_camera, t_camera, lidar_to_car = read_yaml(cali_dir)r_lidar, t_lidar = lidar_to_car[:3, :3], lidar_to_car[:3, -1].reshape(3, 1)r_camera_to_lidar = np.linalg.inv(r_lidar) @ r_camerar_camera_to_lidar_inv = np.linalg.inv(r_camera_to_lidar)t_camera_to_lidar = np.linalg.inv(r_lidar) @ (t_camera - t_lidar) # 前相机,主雷达标定结果show = Truemain()
五、学习交流
有任何疑问可以私信我,欢迎交流学习。
相关文章:

【目标测距】雷达投影测距
文章目录 前言一、读取点云二、点云投影图片三、读取检测信息四、点云投影测距五、学习交流 前言 雷达点云投影相机。图片目标检测,通过检测框约束等等对目标赋予距离。计算消耗较大,适合离线验证操作。在线操作可以只投影雷达检测框。 一、读取点云 py…...
uniapp、小程序canvas相关
1、圆形or圆形头像 //示例 const ctx uni.createCanvasContext(myCanvas); //canvas const round uni.upx2px(72) / 2; // 半径 const x uni.upx2px(92); //目标x轴位置 const y uni.upx2px(236); //目标y轴位置//if 图片是不是静态资源 async > const imgSrc https:/…...

[工业自动化-23]:西门子S7-15xxx编程 - 软件编程 - 西门子PLC人机界面交互HMI功能概述、硬件环境准备、软件环境准备
目录 一、什么是人机界面 二、什么是PLC人机交互界面HMI 三、人机界面设计的功能列表 四、开发主机与PLC的连接方式 五、开发主机与HMI的连接方式 六、HMI组态 一、什么是人机界面 人机界面是指人与机器或系统之间的交互界面。它是人类与计算机或其他设备之间进行信息交换…...

在Ubuntu系统中安装VNC并结合内网穿透实现公网远程访问
🌷🍁 博主猫头虎(🐅🐾)带您 Go to New World✨🍁 🦄 博客首页——🐅🐾猫头虎的博客🎐 🐳 《面试题大全专栏》 🦕 文章图文…...

java基础练习缺少项目?看这篇文章就够了(上)!
公众号:全干开发 。 专注分享简洁但高质量的动图技术文章! 项目概述 本教程适合刚学习完java基础语法的同学,涉及if语句、循环语句、类的封装、集合等基础概念,使用大量gif图帮助读者演示代码操作、效果等,是一个非常…...
鸿蒙为什么使用typescript 作为开发语言 而不是 flutter 或者 kotlin
猜想如下 dev studio 是基于 idea 二次开发的 ,使用kotlin 应该是更合理 变成 jetbrain 全家桶, 但是 现在android 开发也是kotlin 是不是为了做分割 ,所以不使用kotlin flutter 是谷歌的 安卓也是谷歌的 所以不采用 typescript 是微软的…...

Flutter NestedScrollView 、SliverAppBar全解析,悬浮菜单的应用
在我们开发过程中经常会使用到悬浮菜单的使用,当我们滑动到指定位置后,菜单会自动悬浮。 实现效果如下(左为滑动前、右为滑动后): 上述便是通过NestedScrollView 、SliverAppBar实现的效果,通过两个控件我…...
Mongodb 副本集名称重命名
副本集重命名 要重命名副本集,您必须关闭副本集的所有成员,然后使用新的副本集名称配置每个成员的数据库。 此过程需要停机。 先决条件 确保您的副本集未分片。重命名过程仅适用于未分片的副本集。 在重命名副本集之前,请 对 MongoDB 部…...
C#WPF属性触发器实例
本文讲解C#WPF属性触发器的实例 在属性触发器中,当一个属性发生更改时,它将立即或动画更改另一个属性 实例 <Windowx:Class="TriggerDemo.MainWindow"xmlns="http://schemas.microsoft.com/winfx/2006/xaml/presentation"xmlns:x="http://sch…...

Kotlin 核心语法,为什么选择Kotlin ?
Kotlin 是一个基于 JVM 的新的编程语言,由 JetBrains 开发。与Java相比,Kotlin的语法更简洁、更具表达性,而且提供了更多的特性。 Kotlin是使用Java开发者的思维被创建的,Intellij作为它主要的开发IDE。对于 Android开发者&#…...

SpringCloud微服务:Nacos的集群、负载均衡、环境隔离
目录 集群 在user-service的yml文件配置集群 启动服务 负载均衡 order-service配置集群 设置负载均衡 当本地集群的服务挂掉时 访问权重 环境隔离 1、Nacos服务分级存储模型 一级是服务,例如userservice 二级是集群,例如杭州或上海 …...

Selenium+Python做web端自动化测试框架实战
最近受到万点暴击,由于公司业务出现问题,工作任务没那么繁重,有时间摸索seleniumpython自动化测试,结合网上查到的资料自己编写出适合web自动化测试的框架,由于本人也是刚刚开始学习python,这套自动化框架目…...

Linux:安装MySQL服务(非docker方式)
1、下载安装包 下载MySQL安装包,需要Oracle官网的账号 下面是网友提供的账号及密码,亲测有效。 账户:3028064308qq.com 我用的这个,可以登陆 密码:OraclePassword123!Oracle Account: 602205528qq.com Oracle Pass…...
C++实现有理数类 四则运算和输入输出
面试 C 程序员,什么样的问题是好问题? - 知乎 https://www.cnblogs.com/bwjblogs/p/12982908.html...

小鸟飞呀飞
欢迎来到程序小院 小鸟飞呀飞 玩法:鼠标控制小鸟飞翔的方向,点击鼠标左键上升,不要让小鸟掉落,从管道中经过,快去飞呀飞哦^^。开始游戏https://www.ormcc.com/play/gameStart/204 html <canvas width"288&quo…...

Unity 场景烘培 ——unity Post-Processing后处理1(四)
提示:文章有错误的地方,还望诸位大神不吝指教! 文章目录 前言一、Post-Processing是什么?二、安装使用Post-Processing1.安装Post-Processing2.使用Post-Processing(1).添加Post-process Volume(…...

Burpsuite抓HTTPS证书导入问题
Burpsuite证书导出有两种方法: 第一种方法 1、开启代理后直接在浏览器中输入burp下载CA证书 2、在中间证书颁发机构中导入刚导出的证书 3、导入完成后再把这个证书选择导出,另存为cer格式的文件 4、在受信任的根证书颁发机构中导入刚保存的cer格式证书…...
python保存文件到zip压缩包中
这里我们使用zipfile这个库进行操作,保存压缩文件相对简单,只需要指定文件名即可,不需要读取那个文件: with zipfile.ZipFile("zip文件路径", mode, zipfile.ZIP_DEFLATED) as z:z.write("压缩源文件路径", …...
java发送媒体类型为multipart/form-data的请求
文章目录 public static String sendMultipartFormDataPostRequest(String urlString, String data) throws IOException {String fullUrl urlString "?" data;log.info("完整请求路径为{}", fullUrl);URL url new URL(fullUrl);HttpURLConnection co…...

自定义类使用ArrayList中的remove
Java中ArrayList对基础类型和字符串类型的删除操作,直接用remove方法即可。但是对于自定义的类来说,用remove方法删除不了,因为没有办法确定是否是要删除的对象。 ArrayList中remove源码是: public boolean remove(Object o) {if…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...
【网络】每天掌握一个Linux命令 - iftop
在Linux系统中,iftop是网络管理的得力助手,能实时监控网络流量、连接情况等,帮助排查网络异常。接下来从多方面详细介绍它。 目录 【网络】每天掌握一个Linux命令 - iftop工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景…...
<6>-MySQL表的增删查改
目录 一,create(创建表) 二,retrieve(查询表) 1,select列 2,where条件 三,update(更新表) 四,delete(删除表…...

【网络安全产品大调研系列】2. 体验漏洞扫描
前言 2023 年漏洞扫描服务市场规模预计为 3.06(十亿美元)。漏洞扫描服务市场行业预计将从 2024 年的 3.48(十亿美元)增长到 2032 年的 9.54(十亿美元)。预测期内漏洞扫描服务市场 CAGR(增长率&…...

在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...

零基础在实践中学习网络安全-皮卡丘靶场(第九期-Unsafe Fileupload模块)(yakit方式)
本期内容并不是很难,相信大家会学的很愉快,当然对于有后端基础的朋友来说,本期内容更加容易了解,当然没有基础的也别担心,本期内容会详细解释有关内容 本期用到的软件:yakit(因为经过之前好多期…...

招商蛇口 | 执笔CID,启幕低密生活新境
作为中国城市生长的力量,招商蛇口以“美好生活承载者”为使命,深耕全球111座城市,以央企担当匠造时代理想人居。从深圳湾的开拓基因到西安高新CID的战略落子,招商蛇口始终与城市发展同频共振,以建筑诠释对土地与生活的…...

AI+无人机如何守护濒危物种?YOLOv8实现95%精准识别
【导读】 野生动物监测在理解和保护生态系统中发挥着至关重要的作用。然而,传统的野生动物观察方法往往耗时耗力、成本高昂且范围有限。无人机的出现为野生动物监测提供了有前景的替代方案,能够实现大范围覆盖并远程采集数据。尽管具备这些优势…...

【C++特殊工具与技术】优化内存分配(一):C++中的内存分配
目录 一、C 内存的基本概念 1.1 内存的物理与逻辑结构 1.2 C 程序的内存区域划分 二、栈内存分配 2.1 栈内存的特点 2.2 栈内存分配示例 三、堆内存分配 3.1 new和delete操作符 4.2 内存泄漏与悬空指针问题 4.3 new和delete的重载 四、智能指针…...

PHP 8.5 即将发布:管道操作符、强力调试
前不久,PHP宣布了即将在 2025 年 11 月 20 日 正式发布的 PHP 8.5!作为 PHP 语言的又一次重要迭代,PHP 8.5 承诺带来一系列旨在提升代码可读性、健壮性以及开发者效率的改进。而更令人兴奋的是,借助强大的本地开发环境 ServBay&am…...