当前位置: 首页 > news >正文

开源简历生成器OpenResume

在这里插入图片描述

什么是 OpenResume ?

OpenResume 是一个功能强大的开源简历生成器和简历解析器。OpenResume 的目标是为每个人提供免费的现代专业简历设计,让任何人都能充满信心地申请工作。

OpenResume5 个核心特点:

特征描述
1. 实时UI更新当您输入简历信息时,简历 PDF 会实时更新,因此您可以轻松查看最终输出。
2.现代职业简历设计简历 PDF 采用现代专业设计,遵循美国最佳实践,对 GreenhouseLever 等顶级 ATS 平台友好。它会自动设置字体、大小、边距、项目符号的格式,以确保一致性并避免人为错误。
3. 隐私焦点该应用程序仅在您的浏览器本地运行,这意味着无需注册,并且不会有任何数据离开您的浏览器,因此您可以放心地处理您的个人数据。(有趣的事实:仅在本地运行意味着即使您断开互联网连接,该应用程序仍然可以运行。)
4. 从现有简历 PDF 导入如果您已经有现有的 PDF 简历,您可以选择直接导入它,这样您就可以在几秒钟内将您的简历设计更新为现代专业设计。
5. 成功的业绩记录OpenResume 用户已经获得了 DropboxGoogleMeta 等顶级公司的面试和录用通知。它已被证明是有效的,并被招聘人员和招聘经理所模仿。

如果你不想自己搭建,可以去 https://www.open-resume.com/ 看看

在这里插入图片描述

安装

在群晖上以 Docker 方式安装。

在注册表中搜索 open-resume ,选择第一个 peppershade/open-resume,双击直接下载,因为就一个 latest

在这里插入图片描述

端口

本地端口不冲突就行,不确定的话可以用命令查一下

# 查看端口占用
netstat -tunlp | grep 端口号
本地端口容器端口
30343000

在这里插入图片描述

命令行安装

如果你熟悉命令行,可能用 docker cli 更快捷

# 运行容器
docker run -d \--restart unless-stopped \--name open-resume \-p 3034:3000 \peppershade/open-resume:latest

也可以用 docker-compose 安装,将下面的内容保存为 docker-compose.yml 文件

version: '3'services:open-resume:image: peppershade/open-resume:latestcontainer_name: open-resumerestart: unless-stoppedports:- 3034:3000

然后执行下面的命令

# 新建文件夹 open-resume 和 子目录
mkdir -p /volume1/docker/open-resume# 进入 open-resume 目录
cd /volume1/docker/open-resume# 将 docker-compose.yml 放入当前目录# 一键启动
docker-compose up -d

运行

在浏览器中输入 http://群晖IP:3034 就能看到主界面

在这里插入图片描述

Create Resume 开始创建

在这里插入图片描述

老苏因为还没有 pdf ,所以选择了下面的 Create from scratch

在这里插入图片描述

随便编了点数据,中文显示都很正常

在这里插入图片描述

虽然设置了中文字体

在这里插入图片描述

但下载的 pdf 里中文还是乱码,应该还是容器里缺字体导致的吧?

在这里插入图片描述

参考文档

xitanggg/open-resume: OpenResume is a powerful open-source resume builder and resume parser. https://open-resume.com/
地址:https://github.com/xitanggg/open-resume

OpenResume - Free Open-source Resume Builder and Parser
地址:https://www.open-resume.com/

相关文章:

开源简历生成器OpenResume

什么是 OpenResume ? OpenResume 是一个功能强大的开源简历生成器和简历解析器。OpenResume 的目标是为每个人提供免费的现代专业简历设计,让任何人都能充满信心地申请工作。 OpenResume 有 5 个核心特点: 特征描述1. 实时UI更新当您输入简历…...

AI变现之Gpts搞流量+赚钱

文章目录 Gpts | 搞流量 + 赚钱1.项目介绍2.项目分析3.项目实操4.变现路径Gpts | 搞流量 + 赚钱 1.项目介绍 这两天 AI 圈最火的莫过于 OpenAI 开发者大会公布的一个爆炸产品 Gpts 了,大家都知道这个肯定是一个划时代的产品,也绝对是一个风口,虽然官方还没有公布到底怎么通…...

音视频项目—基于FFmpeg和SDL的音视频播放器解析(十六)

介绍 在本系列,我打算花大篇幅讲解我的 gitee 项目音视频播放器,在这个项目,您可以学到音视频解封装,解码,SDL渲染相关的知识。您对源代码感兴趣的话,请查看基于FFmpeg和SDL的音视频播放器 如果您不理解本…...

Elasticsearch文档操作

一、Elasticsearch的CURD 1、CURD之Create PUT lqz/doc/1 {"name":"顾老二","age":30,"from": "gu","desc": "皮肤黑、武器长、性格直","tags": ["黑", "长", "直…...

聊一聊go的单元测试(goconvey、gomonkey、gomock)

文章目录 概要一、测试框架1.1、testing1.2、stretchr/testify1.3、smartystreets/goconvey1.4、cweill/gotests 二、打桩和mock2.1、打桩2.2、mock2.2.1、mockgen2.2.1、示例 三、基准测试和模糊测试3.1、基准测试3.2、模糊测试 四、总结4.1、小结4.2、其他4.3、参考资料 概要…...

Positive Technologies 利用 PT Cloud Application Firewall 保护中小型企业的网络资源

云产品按月订购,无需购买硬件资源 PT Cloud Application Firewall 是 Positive Technologies 推出的首个用于保护网络应用程序的商用云产品。Web 应用层防火墙 (web application firewall, WAF) 现在可以通过 技术合作伙伴——授权服务商和云提供商以订购方式提供1…...

深入解析序列模型:全面阐释 RNN、LSTM 与 Seq2Seq 的秘密

探索序列建模的基础知识和应用。 简介 序列建模是许多领域的一个重要问题,包括自然语言处理 (NLP)、语音识别和语音合成、时间序列预测、音乐生成和「生物信息学」。所有这些任务的共同点是它们需要坚持。接下来的事情的预测是基于历史的。例如,在“哈桑…...

vue项目本地开发构建速度优化 hard-source-webpack-plugin

1、为啥要优化本地构建速度 有些项目因为项目需求点多、功能复杂、管理混乱、引入第三方插件/样式库过多、本身项目页面较多、文件较多等等原因,会导致项目体积变大、本地构建速度明显变慢,这时就需要对项目webpack进行一些设置来提高打包效率、加快打包…...

燕之屋通过港交所聆讯:苦战IPO十余年,黄健等人提前精准套现

撰稿|行星 来源|贝多财经 11月19日,厦门燕之屋生物工程股份有限公司(下称“燕之屋”)通过港交所聆讯,并披露了聆讯后资料集(即招股书),中金公司和广发证券为其联席保荐人。 据贝多财经了解&a…...

【51单片机系列】C51基础

本文内容是关于C51语言的基础内容的,包括C51的数据类型、变量、运算符、函数以及reg52.h文件中的内容,有些与C中相同的内容没有记录在此,比如常量、某些变量、表达式、程序结构、数组等没有涉及。 文章目录 C51的数据类型1. C51中的基本数据类…...

openssl1.0.2版本Windows安装问题

之前安装过1.1版本,Windows环境下C 安装OpenSSL库 源码编译及使用(VS2019)_vs2019安装openssl_肥宝Fable的博客-CSDN博客 后来发现linux编译不过,以为是版本问题,相差太大,所以降一下版本,以免…...

【Java 进阶篇】Ajax 实现——原生JS方式

大家好,欢迎来到这篇关于原生 JavaScript 中使用 Ajax 实现的博客!在前端开发中,我们经常需要与服务器进行数据交互,而 Ajax(Asynchronous JavaScript and XML)是一种用于创建异步请求的技术,它…...

Spring Cloud Stream实践

概述 不同中间件,有各自的使用方法,代码也不一样。 可以使用Spring Cloud Stream解耦,切换中间件时,不需要修改代码。实现方式为使用绑定层,绑定层对生产者和消费者提供统一的编码方式,需要连接不同的中间…...

高精度算法【Java】(待更新中~)

高进度加法 在Java中可以使用BigInteger进行高精度计算,除此也可以仿照竖式相加的计算原理进行计算。 BigInteger 提供所有 Java 的基本整数操作符的对应物,并提供 java.lang.Math 的所有相关方法。另外,BigInteger 还提供以下运算&#xff1…...

说一说HTTP1.0、1.1、2.0版本区别和优化

说一说HTTP1.0、1.1、2.0版本区别和优化 HTTP(Hypertext Transfer Protocol)是一种用于传输超文本的应用层协议。 在不同的版本中,HTTP经历了一系列的演进和改进,主要包括HTTP 1.0、HTTP 1.1和HTTP 2.0。 下面详细解释它们之间…...

51.Sentinel微服务保护

目录 (1)初识Sentinel。 (1.1)雪崩问题及解决方案。 (1.1.1)雪崩问题。 (1.1.2)解决雪崩问题的四种方式。 (1.1.3)总结。 (1.2)…...

【Java 进阶篇】Ajax 实现——JQuery 实现方式 `ajax()`

嗨,亲爱的读者们!欢迎来到这篇关于使用 jQuery 中的 ajax() 方法进行 Ajax 请求的博客。在前端开发中,jQuery 提供了简便而强大的工具,其中 ajax() 方法为我们处理异步请求提供了便捷的解决方案。无需手动创建 XMLHttpRequest 对象…...

I.MX6ULL开发笔记(一)——环境搭建、镜像烧录、网络连接

本系列为使用野火IMX6ULL开发的学习笔记,使用的开发板为如下: 具有的硬件资源有如下: 文章目录 一、环境搭建Win11安装WSL安装串口驱动安装串口工具安装Ubuntu与windows文件互传 二、镜像烧录修改串口终端登录前信息 三、fire-config工具配…...

Javaweb之Ajax的详细解析

1.1 Ajax介绍 1.1.1 Ajax概述 我们前端页面中的数据,如下图所示的表格中的学生信息,应该来自于后台,那么我们的后台和前端是互不影响的2个程序,那么我们前端应该如何从后台获取数据呢?因为是2个程序,所以…...

java基于RestTemplate的微服务发起http请求

实现的效果...

浅谈 React Hooks

React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...

Vue记事本应用实现教程

文章目录 1. 项目介绍2. 开发环境准备3. 设计应用界面4. 创建Vue实例和数据模型5. 实现记事本功能5.1 添加新记事项5.2 删除记事项5.3 清空所有记事 6. 添加样式7. 功能扩展:显示创建时间8. 功能扩展:记事项搜索9. 完整代码10. Vue知识点解析10.1 数据绑…...

【人工智能】神经网络的优化器optimizer(二):Adagrad自适应学习率优化器

一.自适应梯度算法Adagrad概述 Adagrad(Adaptive Gradient Algorithm)是一种自适应学习率的优化算法,由Duchi等人在2011年提出。其核心思想是针对不同参数自动调整学习率,适合处理稀疏数据和不同参数梯度差异较大的场景。Adagrad通…...

关于iview组件中使用 table , 绑定序号分页后序号从1开始的解决方案

问题描述:iview使用table 中type: "index",分页之后 ,索引还是从1开始,试过绑定后台返回数据的id, 这种方法可行,就是后台返回数据的每个页面id都不完全是按照从1开始的升序,因此百度了下,找到了…...

DBAPI如何优雅的获取单条数据

API如何优雅的获取单条数据 案例一 对于查询类API,查询的是单条数据,比如根据主键ID查询用户信息,sql如下: select id, name, age from user where id #{id}API默认返回的数据格式是多条的,如下: {&qu…...

BCS 2025|百度副总裁陈洋:智能体在安全领域的应用实践

6月5日,2025全球数字经济大会数字安全主论坛暨北京网络安全大会在国家会议中心隆重开幕。百度副总裁陈洋受邀出席,并作《智能体在安全领域的应用实践》主题演讲,分享了在智能体在安全领域的突破性实践。他指出,百度通过将安全能力…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

听写流程自动化实践,轻量级教育辅助

随着智能教育工具的发展,越来越多的传统学习方式正在被数字化、自动化所优化。听写作为语文、英语等学科中重要的基础训练形式,也迎来了更高效的解决方案。 这是一款轻量但功能强大的听写辅助工具。它是基于本地词库与可选在线语音引擎构建,…...

视觉slam十四讲实践部分记录——ch2、ch3

ch2 一、使用g++编译.cpp为可执行文件并运行(P30) g++ helloSLAM.cpp ./a.out运行 二、使用cmake编译 mkdir build cd build cmake .. makeCMakeCache.txt 文件仍然指向旧的目录。这表明在源代码目录中可能还存在旧的 CMakeCache.txt 文件,或者在构建过程中仍然引用了旧的路…...

【学习笔记】erase 删除顺序迭代器后迭代器失效的解决方案

目录 使用 erase 返回值继续迭代使用索引进行遍历 我们知道类似 vector 的顺序迭代器被删除后,迭代器会失效,因为顺序迭代器在内存中是连续存储的,元素删除后,后续元素会前移。 但一些场景中,我们又需要在执行删除操作…...