当前位置: 首页 > news >正文

使用Pytorch测试cuda设备的性能(单卡或多卡并行)

以下CUDA设备泛指NVIDIA显卡 或 启用ROCm的AMD显卡

  • 测试环境:
    • Distributor ID: Ubuntu
    • Description: Ubuntu 22.04.3 LTS
    • Release: 22.04
    • Codename: jammy

1.首先,简单使用torch.ones测试CUDA设备

import torch
import timedef cuda_benchmark(device_id, N=1000000):# 指定要使用的显卡设备torch.cuda.set_device(device_id)# 创建输入数据data = torch.ones(N).cuda()# 启动CUDA操作,并记录执行时间start_time = time.time()for i in range(10000):data += 1torch.cuda.synchronize()  # 等待CUDA操作执行完成end_time = time.time()# 将结果从GPU内存下载到主机内存result = data.cpu().numpy()# 打印Benchmark结果和执行时间print(f"Benchmark结果:{result[:10]}")print(f"执行时间:{end_time - start_time} 秒")if __name__ == '__main__':# 测试第一块显卡device_id = 0cuda_benchmark(device_id,10000000)

2.使用自带的CUDABenchmarkModel测试CUDA设备

import torch
import torch.nn as nn
import timeclass CUDABenchmarkModel(nn.Module):def __init__(self):super(CUDABenchmarkModel, self).__init__()self.fc = nn.Linear(10, 10).cuda()def forward(self, x):return self.fc(x)def cuda_benchmark(device_ids, N=10000000):# 创建模型model = CUDABenchmarkModel()model = nn.DataParallel(model, device_ids=device_ids)# 创建输入数据data = torch.ones(N, 10).cuda()# 启动CUDA操作,并记录执行时间start_time = time.time()for i in range(10000):output = model(data)torch.cuda.synchronize()  # 等待CUDA操作执行完成end_time = time.time()# 打印执行时间print(f"执行时间:{end_time - start_time} 秒")if __name__ == '__main__':# 同时测试3块显卡device_ids = [0, 1, 2]cuda_benchmark(device_ids=device_ids)

3.使用nccl多进程的方式测试CUDA设备

import torch
import torch.nn as nn
import torch.distributed as dist
import torch.multiprocessing as mp
import timedef cuda_benchmark(device_id, N=10000000):# 指定要使用的显卡设备torch.cuda.set_device(device_id)print(f"该GPU的核心数量为:{torch.cuda.get_device_properties(device_id).multi_processor_count}")# 创建输入数据data = torch.ones(N).cuda()# 启动CUDA操作,并记录执行时间start_time = time.time()for i in range(10000):data += 1torch.cuda.synchronize()  # 等待CUDA操作执行完成end_time = time.time()# 将结果从GPU内存下载到主机内存result = data.cpu().numpy()# 打印Benchmark结果和执行时间print(f"Benchmark结果:{result[:10]}")print(f"执行时间:{end_time - start_time} 秒")def main(num):# 初始化多进程mp.spawn(run, args=(num,), nprocs=num)def run(rank,world_size):"""每个进程的入口函数"""# 初始化进程组dist.init_process_group("nccl", init_method="tcp://127.0.0.1:23456", rank=rank, world_size=world_size)# 指定设备IDdevice_id = rank# 在多个GPU上并行执行操作model = cuda_benchmark(device_id)if __name__ == '__main__':# 同时启用3个进程(一个进程对应一块显卡)device_numbers = 3main(device_numbers)

相关文章:

使用Pytorch测试cuda设备的性能(单卡或多卡并行)

以下CUDA设备泛指NVIDIA显卡 或 启用ROCm的AMD显卡 测试环境: Distributor ID: UbuntuDescription: Ubuntu 22.04.3 LTSRelease: 22.04Codename: jammy 1.首先,简单使用torch.ones测试CUDA设备 import torch import timedef cuda_benchmark(device_id…...

SpringBoot-AOP-基础到进阶

SpringBoot-AOP AOP基础 学习完spring的事务管理之后,接下来我们进入到AOP的学习。 AOP也是spring框架的第二大核心,我们先来学习AOP的基础。 在AOP基础这个阶段,我们首先介绍一下什么是AOP,再通过一个快速入门程序&#xff0c…...

Midjourney绘画提示词Prompt参考学习教程

一、工具 SparkAi: SparkAi创作系统是基于OpenAI很火的ChatGPT进行开发的Ai智能问答系统和Midjourney绘画系统,支持OpenAI-GPT全模型国内AI全模型。本期针对源码系统整体测试下来非常完美,可以说SparkAi是目前国内一款的ChatGPT对接OpenAI软…...

美国费米实验室SQMS启动“量子车库”计划!30+顶尖机构积极参与

​11月6日,美国能源部费米国家加速器实验室(SQMS)正式启动了名为“量子车库”的全新旗舰量子研究设施。这个6,000平方英尺的实验室是由超导量子材料与系统中心负责设计和建造,旨在联合国内外的科学界、工业领域和初创企业,共同推动量子信息科…...

DCDC同步降压控制器SCT82A30\SCT82630

SCT82A30是一款100V电压模式控制同步降压控制器,具有线路前馈。40ns受控高压侧MOSFET的最小导通时间支持高转换比,实现从48V输入到低压轨的直接降压转换,降低了系统复杂性和解决方案成本。如果需要,在低至6V的输入电压下降期间&am…...

本地/笔记本/纯 cpu 部署、使用类 gpt 大模型

文章目录 1. 安装 web UI1.1. 下载代码库1.2. 创建 conda 环境1.3. 安装 pytorch1.4. 安装 pip 库 2. 下载大模型3. 使用 web UI3.1. 运行 UI 界面3.2. 加载模型3.3. 进行对话 使用 web UI 大模型文件,即可在笔记本上部署、使用类 gpt 大模型。 1. 安装 web UI 1…...

企企通亮相广东智能装备产业发展大会:以数字化采购促进智能装备产业集群高质量发展

制造业是立国之本,是国民经济的主要支柱、是推动工业技术创新的重要来源。 广东作为我国制造业大省,装备制造业规模增长快速,技术水平居于全国前列。为全面贯彻学习党的二十大精神,进一步推动机械装备可靠性设计,促进新…...

pycharm安装教程

PyCharm的安装步骤如下: 找到下载PyCharm的路径,双击.exe文件进行安装。点击Next后,选择安装路径页面(尽量不要选择带中文和空格的目录),选择好路径后,点击Next进行下一步。进入Installation O…...

LeetCode【76】最小覆盖子串

题目&#xff1a; 思路&#xff1a; https://segmentfault.com/a/1190000021815411 代码&#xff1a; public String minWindow(String s, String t) { Map<Character, Integer> map new HashMap<>();//遍历字符串 t&#xff0c;初始化每个字母的次数for (int…...

光谱图像超分辨率综述

光谱图像超分辨率综述 简介 ​ 论文链接&#xff1a;A Review of Hyperspectral Image Super-Resolution Based on Deep Learning UpSample网络框架 1.Front-end Upsampling ​ 在Front-end上采样中&#xff0c;是首先扩大LR图像&#xff0c;然后通过卷积网络对放大图像进行…...

Ubuntu apt-get换源

一、参考资料 ubuntu16.04更换镜像源为阿里云镜像源 二、相关介绍 1. apt常用命令 sudo apt-get clean sudo apt-get update2. APT加速工具 轻量小巧的零配置 APT 加速工具&#xff1a;APT Proxy GitHub项目地址&#xff1a;apt-proxy 三、换源关键步骤 1. 更新阿里源 …...

磐舟CI-Web前端项目

整体介绍 磐舟作为一个devops产品&#xff0c;它具备基础的CI流水线功能。同时磐舟的流水线是完全基于云原生架构设计的&#xff0c;在使用时会有一些注意事项。这里首先我们要了解磐舟整体的流水线打包逻辑。 文档结构说明 一般来说&#xff0c;磐舟推荐单个业务的标准git库…...

Flink 运行架构和核心概念

Flink 运行架构和核心概念 几个角色的作用&#xff1a; 客户端&#xff1a;提交作业JobManager进程 任务管理调度 JobMaster线程 一个job对应一个JobMaster 负责处理单个作业ResourceManager 资源的分配和管理&#xff0c;资源就是任务槽分发器 提交应用&#xff0c;为每一个…...

中间件安全:Apache Tomcat 文件上传.(CVE-2017-12615)

中间件安全&#xff1a;Apache Tomcat 文件上传. 当存在漏洞的 Tomcat 运行在 Windows / Linux 主机上&#xff0c;且启用了 HTTP PUT 请求方法(例如&#xff0c;将 readonly 初始化参数由默认值设置为ialse) &#xff0c; 攻击者将有可能可通过精心构造的攻击请求数据包向服务…...

Linux 命令补充

目录 tr 命令 命令举例 cut 命令 命令举例 uniq 命令 命令举例 sort 命令 命令举例 面试题 1. 给你一个文件如何提取前 10 的 IP 2. 如何提前 ss 中的状态 tr 命令 作用tr转换tr -d删除tr -c取反tr -s压缩 命令举例 cut 命令 作用cut提取cut -f指定列cut -d指定分…...

HTTP常见面试题(小林coding版总结)

1&#xff1a;HTTP基本概念 超文本 传输 协议 2&#xff1a;常见状态码 1xx 提示信息 2xx 成功 3xx 重定向 4xx 客户端错误 5xx 服务器错误 3&#xff1a;HTTP常见的字段 host 指定服务器的域名 Content-Length 回应的数据长度 Connection 长连接&#xff08;Keep-Alive&#x…...

一整个分析模型库,大数据分析工具都这么玩了吗?

一整个分析模型库&#xff0c;100张BI报表&#xff0c;覆盖销售、财务、采购、库存等多个分析主题。只需对接ERP&#xff0c;就能自动生成BI报表&#xff0c;完成对海量数据的系统化分析。现在大数据分析工具都发展到这种程度了吗&#xff1f; 放眼看去&#xff0c;现阶段能做…...

最新企业服务总线ESB的国内主要厂商和开源厂商排名,方案书价格多少

企业服务总线ESB是什么&#xff1f; ESB平台&#xff08;企业服务总线&#xff0c;Enterprise Service Bus&#xff09;是一种企业级集成平台&#xff0c;它提供了一种开放的、基于标准的消息机制&#xff0c;通过简单的标准适配器和接口&#xff0c;来完成粗粒度应用&#xff…...

react重要知识点(面经)

react重要知识点&#xff08;面经&#xff09; react生命周期classhooks reduxredux 核心概念redux 计数器案例 react页面加载卡顿使用懒加载异步加载JavaScript压缩和缓存静态资源使用React.memo() PubSub使用方式1.1 react导入库1.2 react 页面引入pubsubjs1.3 pubsubjs使用2…...

面试题-6

1.精灵图和base64的区别是什么&#xff1f; 精灵图:把多张小图整合到一张大图上,利用定位的一些属性把小图显示在页面上,当访问页面可以减少请求,提高加载速度 base64&#xff1a;传输8bit字节代码的编码方式,把原本二进制形式转为64个字符的单位&#xff0c;最后组成字符串 …...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

【Linux】shell脚本忽略错误继续执行

在 shell 脚本中&#xff0c;可以使用 set -e 命令来设置脚本在遇到错误时退出执行。如果你希望脚本忽略错误并继续执行&#xff0c;可以在脚本开头添加 set e 命令来取消该设置。 举例1 #!/bin/bash# 取消 set -e 的设置 set e# 执行命令&#xff0c;并忽略错误 rm somefile…...

【Linux】Linux 系统默认的目录及作用说明

博主介绍&#xff1a;✌全网粉丝23W&#xff0c;CSDN博客专家、Java领域优质创作者&#xff0c;掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域✌ 技术范围&#xff1a;SpringBoot、SpringCloud、Vue、SSM、HTML、Nodejs、Python、MySQL、PostgreSQL、大数据、物…...

安卓基础(Java 和 Gradle 版本)

1. 设置项目的 JDK 版本 方法1&#xff1a;通过 Project Structure File → Project Structure... (或按 CtrlAltShiftS) 左侧选择 SDK Location 在 Gradle Settings 部分&#xff0c;设置 Gradle JDK 方法2&#xff1a;通过 Settings File → Settings... (或 CtrlAltS)…...

node.js的初步学习

那什么是node.js呢&#xff1f; 和JavaScript又是什么关系呢&#xff1f; node.js 提供了 JavaScript的运行环境。当JavaScript作为后端开发语言来说&#xff0c; 需要在node.js的环境上进行当JavaScript作为前端开发语言来说&#xff0c;需要在浏览器的环境上进行 Node.js 可…...

DeepSeek越强,Kimi越慌?

被DeepSeek吊打的Kimi&#xff0c;还有多少人在用&#xff1f; 去年&#xff0c;月之暗面创始人杨植麟别提有多风光了。90后清华学霸&#xff0c;国产大模型六小虎之一&#xff0c;手握十几亿美金的融资。旗下的AI助手Kimi烧钱如流水&#xff0c;单月光是投流就花费2个亿。 疯…...

32位寻址与64位寻址

32位寻址与64位寻址 32位寻址是什么&#xff1f; 32位寻址是指计算机的CPU、内存或总线系统使用32位二进制数来标识和访问内存中的存储单元&#xff08;地址&#xff09;&#xff0c;其核心含义与能力如下&#xff1a; 1. 核心定义 地址位宽&#xff1a;CPU或内存控制器用32位…...

李沐--动手学深度学习--GRU

1.GRU从零开始实现 #9.1.2GRU从零开始实现 import torch from torch import nn from d2l import torch as d2l#首先读取 8.5节中使用的时间机器数据集 batch_size,num_steps 32,35 train_iter,vocab d2l.load_data_time_machine(batch_size,num_steps) #初始化模型参数 def …...

构建Docker镜像的Dockerfile文件详解

文章目录 前言Dockerfile 案例docker build1. 基本构建2. 指定 Dockerfile 路径3. 设置构建时变量4. 不使用缓存5. 删除中间容器6. 拉取最新基础镜像7. 静默输出完整示例 docker runDockerFile 入门syntax指定构造器FROM基础镜像RUN命令注释COPY复制ENV设置环境变量EXPOSE暴露端…...

Spring是如何实现无代理对象的循环依赖

无代理对象的循环依赖 什么是循环依赖解决方案实现方式测试验证 引入代理对象的影响创建代理对象问题分析 源码见&#xff1a;mini-spring 什么是循环依赖 循环依赖是指在对象创建过程中&#xff0c;两个或多个对象相互依赖&#xff0c;导致创建过程陷入死循环。以下通过一个简…...