竞赛 题目:基于深度学习的图像风格迁移 - [ 卷积神经网络 机器视觉 ]
文章目录
- 0 简介
- 1 VGG网络
- 2 风格迁移
- 3 内容损失
- 4 风格损失
- 5 主代码实现
- 6 迁移模型实现
- 7 效果展示
- 8 最后
0 简介
🔥 优质竞赛项目系列,今天要分享的是
基于深度学习卷积神经网络的花卉识别
该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
图片风格迁移指的是将一个图片的风格转换到另一个图片中,如图所示:

原图片经过一系列的特征变换,具有了新的纹理特征,这就叫做风格迁移。
1 VGG网络
在实现风格迁移之前,需要先简单了解一下VGG网络(由于VGG网络不断使用卷积提取特征的网络结构和准确的图像识别效率,在这里我们使用VGG网络来进行图像的风格迁移)。

如上图所示,从A-
E的每一列都表示了VGG网络的结构原理,其分别为:VGG-11,VGG-13,VGG-16,VGG-19,如下图,一副图片经过VGG-19网络结构可以最后得到一个分类结构。

2 风格迁移
对一副图像进行风格迁移,需要清楚的有两点。
- 生成的图像需要具有原图片的内容特征
- 生成的图像需要具有风格图片的纹理特征
根据这两点,可以确定,要想实现风格迁移,需要有两个loss值:
一个是生成图片的内容特征与原图的内容特征的loss,另一个是生成图片的纹理特征与风格图片的纹理特征的loss。
而对一张图片进行不同的特征(内容特征和纹理特征)提取,只需要使用不同的卷积结构进行训练即可以得到。这时我们需要用到两个神经网络。
再回到VGG网络上,VGG网络不断使用卷积层来提取特征,利用特征将物品进行分类,所以该网络中提取内容和纹理特征的参数都可以进行迁移使用。故需要将生成的图片经过VGG网络的特征提取,再分别针对内容和纹理进行特征的loss计算。

如图,假设初始化图像x(Input image)是一张随机图片,我们经过fw(image Transform Net)网络进行生成,生成图片y。
此时y需要和风格图片ys进行特征的计算得到一个loss_style,与内容图片yc进行特征的计算得到一个loss_content,假设loss=loss_style+loss_content,便可以对fw的网络参数进行训练。
现在就可以看网上很常见的一张图片了:

相较于我画的第一张图,这即对VGG内的loss求值过程进行了细化。
细化的结果可以分为两个方面:
- (1)内容损失
- (2)风格损失
3 内容损失
由于上图中使用的模型是VGG-16,那么即相当于在VGG-16的relu3-3处,对两张图片求得的特征进行计算求损失,计算的函数如下:

简言之,假设yc求得的特征矩阵是φ(y),生成图片求得的特征矩阵为φ(y^),且c=φ.channel,w=φ.weight,h=φ.height,则有:

代码实现:
def content_loss(content_img, rand_img):content_layers = [('relu3_3', 1.0)]content_loss = 0.0# 逐个取出衡量内容损失的vgg层名称及对应权重for layer_name, weight in content_layers:# 计算特征矩阵p = get_vgg(content_img, layer_name)x = get_vgg(rand_img, layer_name)# 长x宽xchannelM = p.shape[1] * p.shape[2] * p.shape[3]# 根据公式计算损失,并进行累加content_loss += (1.0 / M) * tf.reduce_sum(tf.pow(p - x, 2)) * weight# 将损失对层数取平均content_loss /= len(content_layers)return content_loss
4 风格损失
风格损失由多个特征一同计算,首先需要计算Gram Matrix

Gram Matrix实际上可看做是feature之间的偏心协方差矩阵(即没有减去均值的协方差矩阵),在feature
map中,每一个数字都来自于一个特定滤波器在特定位置的卷积,因此每个数字就代表一个特征的强度,而Gram计算的实际上是两两特征之间的相关性,哪两个特征是同时出现的,哪两个是此消彼长的等等,同时,Gram的对角线元素,还体现了每个特征在图像中出现的量,因此,Gram有助于把握整个图像的大体风格。有了表示风格的Gram
Matrix,要度量两个图像风格的差异,只需比较他们Gram Matrix的差异即可。 故在计算损失的时候函数如下:

在实际使用时,该loss的层级一般选择由低到高的多个层,比如VGG16中的第2、4、7、10个卷积层,然后将每一层的style loss相加。

第三个部分不是必须的,被称为Total Variation
Loss。实际上是一个平滑项(一个正则化项),目的是使生成的图像在局部上尽可能平滑,而它的定义和马尔科夫随机场(MRF)中使用的平滑项非常相似。
其中yn+1是yn的相邻像素。
代码实现以上函数:
# 求gamm矩阵
def gram(x, size, deep):x = tf.reshape(x, (size, deep))g = tf.matmul(tf.transpose(x), x)return gdef style_loss(style_img, rand_img):style_layers = [('relu1_2', 0.25), ('relu2_2', 0.25), ('relu3_3', 0.25), ('reluv4_3', 0.25)]style_loss = 0.0# 逐个取出衡量风格损失的vgg层名称及对应权重for layer_name, weight in style_layers:# 计算特征矩阵a = get_vgg(style_img, layer_name)x = get_vgg(rand_img, layer_name)# 长x宽M = a.shape[1] * a.shape[2]N = a.shape[3]# 计算gram矩阵A = gram(a, M, N)G = gram(x, M, N)# 根据公式计算损失,并进行累加style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight# 将损失对层数取平均style_loss /= len(style_layers)return style_loss
5 主代码实现
代码实现主要分为4步:
-
1、随机生成图片
-
2、读取内容和风格图片
-
3、计算总的loss
-
4、训练修改生成图片的参数,使得loss最小
* def main():# 生成图片rand_img = tf.Variable(random_img(WIGHT, HEIGHT), dtype=tf.float32)with tf.Session() as sess:content_img = cv2.imread('content.jpg')style_img = cv2.imread('style.jpg')# 计算loss值cost = ALPHA * content_loss(content_img, rand_img) + BETA * style_loss(style_img, rand_img)optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)sess.run(tf.global_variables_initializer())for step in range(TRAIN_STEPS):# 训练sess.run([optimizer, rand_img])if step % 50 == 0:img = sess.run(rand_img)img = np.clip(img, 0, 255).astype(np.uint8)name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"cv2.imwrite(name, img)6 迁移模型实现
由于在进行loss值求解时,需要在多个网络层求得特征值,并根据特征值进行带权求和,所以需要根据已有的VGG网络,取其参数,重新建立VGG网络。
注意:在这里使用到的是VGG-19网络:
在重建的之前,首先应该下载Google已经训练好的VGG-19网络,以便提取出已经训练好的参数,在重建的VGG-19网络中重新利用。

下载得到.mat文件以后,便可以进行网络重建了。已知VGG-19网络的网络结构如上述图1中的E网络,则可以根据E网络的结构对网络重建,VGG-19网络:

进行重建即根据VGG-19模型的结构重新创建一个结构相同的神经网络,提取出已经训练好的参数作为新的网络的参数,设置为不可改变的常量即可。
def vgg19():layers=('conv1_1','relu1_1','conv1_2','relu1_2','pool1','conv2_1','relu2_1','conv2_2','relu2_2','pool2','conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3','conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4','conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5')vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')weights = vgg['layers'][0]network={}net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)network['input'] = netfor i,name in enumerate(layers):layer_type=name[:4]if layer_type=='conv':kernels = weights[i][0][0][0][0][0]bias = weights[i][0][0][0][0][1]conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)net=tf.nn.relu(conv + bias)elif layer_type=='pool':net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')network[name]=netreturn network
由于计算风格特征和内容特征时数据都不会改变,所以为了节省训练时间,在训练之前先计算出特征结果(该函数封装在以下代码get_neck()函数中)。
总的代码如下:
import tensorflow as tfimport numpy as npimport scipy.ioimport cv2import scipy.miscHEIGHT = 300WIGHT = 450LEARNING_RATE = 1.0NOISE = 0.5ALPHA = 1BETA = 500TRAIN_STEPS = 200OUTPUT_IMAGE = "D://python//img"STYLE_LAUERS = [('conv1_1', 0.2), ('conv2_1', 0.2), ('conv3_1', 0.2), ('conv4_1', 0.2), ('conv5_1', 0.2)]CONTENT_LAYERS = [('conv4_2', 0.5), ('conv5_2',0.5)]def vgg19():layers=('conv1_1','relu1_1','conv1_2','relu1_2','pool1','conv2_1','relu2_1','conv2_2','relu2_2','pool2','conv3_1','relu3_1','conv3_2','relu3_2','conv3_3','relu3_3','conv3_4','relu3_4','pool3','conv4_1','relu4_1','conv4_2','relu4_2','conv4_3','relu4_3','conv4_4','relu4_4','pool4','conv5_1','relu5_1','conv5_2','relu5_2','conv5_3','relu5_3','conv5_4','relu5_4','pool5')vgg = scipy.io.loadmat('D://python//imagenet-vgg-verydeep-19.mat')weights = vgg['layers'][0]network={}net = tf.Variable(np.zeros([1, 300, 450, 3]), dtype=tf.float32)network['input'] = netfor i,name in enumerate(layers):layer_type=name[:4]if layer_type=='conv':kernels = weights[i][0][0][0][0][0]bias = weights[i][0][0][0][0][1]conv=tf.nn.conv2d(net,tf.constant(kernels),strides=(1,1,1,1),padding='SAME',name=name)net=tf.nn.relu(conv + bias)elif layer_type=='pool':net=tf.nn.max_pool(net,ksize=(1,2,2,1),strides=(1,2,2,1),padding='SAME')network[name]=netreturn network# 求gamm矩阵def gram(x, size, deep):x = tf.reshape(x, (size, deep))g = tf.matmul(tf.transpose(x), x)return gdef style_loss(sess, style_neck, model):style_loss = 0.0for layer_name, weight in STYLE_LAUERS:# 计算特征矩阵a = style_neck[layer_name]x = model[layer_name]# 长x宽M = a.shape[1] * a.shape[2]N = a.shape[3]# 计算gram矩阵A = gram(a, M, N)G = gram(x, M, N)# 根据公式计算损失,并进行累加style_loss += (1.0 / (4 * M * M * N * N)) * tf.reduce_sum(tf.pow(G - A, 2)) * weight# 将损失对层数取平均style_loss /= len(STYLE_LAUERS)return style_lossdef content_loss(sess, content_neck, model):content_loss = 0.0# 逐个取出衡量内容损失的vgg层名称及对应权重for layer_name, weight in CONTENT_LAYERS:# 计算特征矩阵p = content_neck[layer_name]x = model[layer_name]# 长x宽xchannelM = p.shape[1] * p.shape[2]N = p.shape[3]lss = 1.0 / (M * N)content_loss += lss * tf.reduce_sum(tf.pow(p - x, 2)) * weight# 根据公式计算损失,并进行累加# 将损失对层数取平均content_loss /= len(CONTENT_LAYERS)return content_lossdef random_img(height, weight, content_img):noise_image = np.random.uniform(-20, 20, [1, height, weight, 3])random_img = noise_image * NOISE + content_img * (1 - NOISE)return random_imgdef get_neck(sess, model, content_img, style_img):sess.run(tf.assign(model['input'], content_img))content_neck = {}for layer_name, weight in CONTENT_LAYERS:# 计算特征矩阵p = sess.run(model[layer_name])content_neck[layer_name] = psess.run(tf.assign(model['input'], style_img))style_content = {}for layer_name, weight in STYLE_LAUERS:# 计算特征矩阵a = sess.run(model[layer_name])style_content[layer_name] = areturn content_neck, style_contentdef main():model = vgg19()content_img = cv2.imread('D://a//content1.jpg')content_img = cv2.resize(content_img, (450, 300))content_img = np.reshape(content_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]style_img = cv2.imread('D://a//style1.jpg')style_img = cv2.resize(style_img, (450, 300))style_img = np.reshape(style_img, (1, 300, 450, 3)) - [128.0, 128.2, 128.0]# 生成图片rand_img = random_img(HEIGHT, WIGHT, content_img)with tf.Session() as sess:# 计算loss值content_neck, style_neck = get_neck(sess, model, content_img, style_img)cost = ALPHA * content_loss(sess, content_neck, model) + BETA * style_loss(sess, style_neck, model)optimizer = tf.train.AdamOptimizer(LEARNING_RATE).minimize(cost)sess.run(tf.global_variables_initializer())sess.run(tf.assign(model['input'], rand_img))for step in range(TRAIN_STEPS):print(step)# 训练sess.run(optimizer)if step % 10 == 0:img = sess.run(model['input'])img += [128, 128, 128]img = np.clip(img, 0, 255).astype(np.uint8)name = OUTPUT_IMAGE + "//" + str(step) + ".jpg"img = img[0]cv2.imwrite(name, img)img = sess.run(model['input'])img += [128, 128, 128]img = np.clip(img, 0, 255).astype(np.uint8)cv2.imwrite("D://end.jpg", img[0])main()
7 效果展示

8 最后
🧿 更多资料, 项目分享:
https://gitee.com/dancheng-senior/postgraduate
相关文章:
竞赛 题目:基于深度学习的图像风格迁移 - [ 卷积神经网络 机器视觉 ]
文章目录 0 简介1 VGG网络2 风格迁移3 内容损失4 风格损失5 主代码实现6 迁移模型实现7 效果展示8 最后 0 简介 🔥 优质竞赛项目系列,今天要分享的是 基于深度学习卷积神经网络的花卉识别 该项目较为新颖,适合作为竞赛课题方向,…...
【unity3D-网格编程】01:Mesh基础属性以及用代码创建一个三角形
💗 未来的游戏开发程序媛,现在的努力学习菜鸡 💦本专栏是我关于游戏开发的网格编程方面学习笔记 🈶本篇是unity的网格编程系列01-mesh基础属性 网格编程系列01 mesh基础属性实践操作用代码初始化一个三角形在三角形的基础上改成正…...
Java贪吃蛇小游戏
Java贪吃蛇小游戏 import javax.swing.*; import java.awt.*; import java.awt.event.ActionEvent; import java.awt.event.ActionListener; import java.awt.event.KeyEvent; import java.awt.event.KeyListener; import java.util.LinkedList; import java.util.Random;publi…...
Linux:系统基本信息扫描(1)
#系统基本信息: uname -a #Linux发行版信息: lsb_release -a #内核与发行版信息: cat /proc/version #linux 用户 cat /etc/passwd #Linux 组查询 cat /etc/group #CPU详细信息:lscpu -a #获取CPU模式: cat /sys/devices/system/cpu/cpu0/cpufreq/scaling\_governor #per…...
VR全景打造亮眼吸睛创意内容:三维模型、实景建模
随着VR技术在不同行业之间应用落地,市场规模也在快速扩大,VR全景这种全新的视觉体验为我们生活中的许多方面都带来了无限的可能。更加完整的呈现出一个场景或是物体的所有细节,让浏览者感受到自己仿佛置身于现场一般;其次…...
ProTable高级表格获取表单数据
隐藏高级表格中的收起按钮 手动控制高级表格中的搜索按钮 获取高级表格中的表单数据 Forminstance 引入 然后在代码中定义 const refForm useRef(); 使用 refForm.current.getFileDsValue();...
力扣刷题第二十七天--二叉树
前言 题目大同小异,按要求来即可。 内容 一、二叉树的右视图 199.二叉树的右视图 给定一个二叉树的 根节点 root,想象自己站在它的右侧,按照从顶部到底部的顺序,返回从右侧所能看到的节点值。 广度优先搜索 取每层最后一个…...
一个快递包裹的跨国之旅
事情要从今年三月份说起,一位爱尔兰的同事在6月份结婚,团队同事准备了中国风的丝绸画轴、领带、丝巾作为礼物。3月份开始邮寄,4月初爱尔兰方面收件,5月份因为文件不足、不完整、不正确等原因被取消进口,7月份退回到大连…...
qsort函数使用方法总结
目录 一、qsort函数原型 二、compar参数 三、各种类型的qsort排序 1. int 数组排序 2. 结构体排序 3. 字符串指针数组排序 4. 字符串二维数组排序 四、回调函数 1. 什么是回调函数 2. 为什么要用回调函数? 3. 怎么使用回调函数? 4.下面是…...
机器学习介绍与分类
随着科学技术的不断发展,机器学习作为人工智能领域的重要分支,正逐渐引起广泛的关注和应用。本文将介绍机器学习的基本概念、原理和分类方法,帮助读者更好地理解和应用机器学习技术。 一、机器学习的基本概念 机器学习是一种通过从数据中学…...
linux控制台命令
进入root sudo su root 浏览当前文件夹列表 ll ls 查看文件 vim test.txt :q 退出查看模式 上传 sudo rz rz 覆盖上传 rz -y 修改文件名: mv 旧文件名 新文件名 修改文件权限 sudo chmod ar xxx.txt sudo chmod 777 test.txt 7 4 2 1 读写运行权限…...
快时尚品牌Halara登上TikTok美国小店榜Top 5,运动健身风靡TikTok
TikTok Shop美国电商数据周榜(11/06-12)已出,具体信息如下: 上周总GMV达到5850万美元,日均出单840万美元;单日出单最高达2110万美元,是当前美国单日最高销售额; 截至11月12日&…...
Docker 安装 Oracle Database 23c
目录 访问 Oracle 官方网站 使用 Docker 运行 Oracle Database 23c 免费容器映像 创建并运行 Oracle Database 23c 容器 查看已下载的镜像 列出正在运行的容器 进入容器 sqlplus 命令 访问 Oracle 官方网站 Database Software Downloads | Oracle 中国 使用 Docker 运行…...
什么是美国服务器,有哪些优势,适用于什么场景?
在互联网发展的过程中,服务器扮演着至关重要的角色。而美国作为全球信息技术的中心,其服务器在全球范围内受到广泛关注。 美国服务器是指在美国本土机房搭建并运行的服务器。其拥有带宽大、优质硬件、售后运维好、位置优越、数据安全性高以及免备…...
TeXLive 2023安装教程
TeXLive 2023安装教程 本文介绍最新TeX发行版——TeXLive 2023的安装步骤。如果你想用LaTeX进行写作,那么需要搭建LaTeX环境:可以选择下面两种方案之一进行安装:(1)TeXLive 2023TeXStudio或者(2)TeXLive 2023WinEdt 11。其中TeXLive 2023是由…...
uniapp中swiper 轮播带左右箭头,点击切换轮播效果demo(整理)
可以点击箭头左右切换-进行轮播 <template><view class"swiper-container"><swiper class"swiper" :current"currentIndex" :autoplay"true" interval"9000" circular indicator-dotschange"handleSw…...
网络连接Android设备
参考:https://blog.csdn.net/qq_37858386/article/details/123755700 二、网络adb调试开启步骤 1、把Android平板或者手机WiFi连接到跟PC机子同一个网段的网络,在设置-系统-关于-状态 下面查看设备IP,然后查看PC是否可以ping通手机的设备的IP。 2、先…...
Redis(位图Bitmap和位域Bitfield)
位图: 位图是字符串类型的扩展。 Redis中的位图是一种特殊的数据结构,用于表示一系列位的集合。它可以存储大量的布尔值数据,每个位代表一个布尔值(0或1),并且可以对这些位进行各种位运算操作。位图通常用…...
【ArcGIS】批量对栅格图像按要素掩膜提取
要把一张大的栅格图裁成分省或者分县市的栅格集,一般是用ArcGIS里的按掩膜提取。 但是有的时候所要求的栅格集量非常大,所以用代码来做批量掩膜(按字段)会非常方便。 import arcpy , shutil , os from arcpy import env from ar…...
二进制安装minio 并实现主从同步
二进制安装minio 并实现主从同步 一、安装部署minio1.1、创建minio目录并下载minio1.2、授予执行权限1.3、创建存储目录和日志目录1.4、在目录下创建一个启动脚本1.5、设置minio开机启动 二、minio主从配置2.1、从服务器安装过程同《一》2.2、从服务器下载mc2.3、配置同步2.4、…...
基于大模型的 UI 自动化系统
基于大模型的 UI 自动化系统 下面是一个完整的 Python 系统,利用大模型实现智能 UI 自动化,结合计算机视觉和自然语言处理技术,实现"看屏操作"的能力。 系统架构设计 #mermaid-svg-2gn2GRvh5WCP2ktF {font-family:"trebuchet ms",verdana,arial,sans-…...
使用VSCode开发Django指南
使用VSCode开发Django指南 一、概述 Django 是一个高级 Python 框架,专为快速、安全和可扩展的 Web 开发而设计。Django 包含对 URL 路由、页面模板和数据处理的丰富支持。 本文将创建一个简单的 Django 应用,其中包含三个使用通用基本模板的页面。在此…...
解决Ubuntu22.04 VMware失败的问题 ubuntu入门之二十八
现象1 打开VMware失败 Ubuntu升级之后打开VMware上报需要安装vmmon和vmnet,点击确认后如下提示 最终上报fail 解决方法 内核升级导致,需要在新内核下重新下载编译安装 查看版本 $ vmware -v VMware Workstation 17.5.1 build-23298084$ lsb_release…...
java调用dll出现unsatisfiedLinkError以及JNA和JNI的区别
UnsatisfiedLinkError 在对接硬件设备中,我们会遇到使用 java 调用 dll文件 的情况,此时大概率出现UnsatisfiedLinkError链接错误,原因可能有如下几种 类名错误包名错误方法名参数错误使用 JNI 协议调用,结果 dll 未实现 JNI 协…...
cf2117E
原题链接:https://codeforces.com/contest/2117/problem/E 题目背景: 给定两个数组a,b,可以执行多次以下操作:选择 i (1 < i < n - 1),并设置 或,也可以在执行上述操作前执行一次删除任意 和 。求…...
高危文件识别的常用算法:原理、应用与企业场景
高危文件识别的常用算法:原理、应用与企业场景 高危文件识别旨在检测可能导致安全威胁的文件,如包含恶意代码、敏感数据或欺诈内容的文档,在企业协同办公环境中(如Teams、Google Workspace)尤为重要。结合大模型技术&…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
蓝桥杯3498 01串的熵
问题描述 对于一个长度为 23333333的 01 串, 如果其信息熵为 11625907.5798, 且 0 出现次数比 1 少, 那么这个 01 串中 0 出现了多少次? #include<iostream> #include<cmath> using namespace std;int n 23333333;int main() {//枚举 0 出现的次数//因…...
Reasoning over Uncertain Text by Generative Large Language Models
https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829https://ojs.aaai.org/index.php/AAAI/article/view/34674/36829 1. 概述 文本中的不确定性在许多语境中传达,从日常对话到特定领域的文档(例如医学文档)(Heritage 2013;Landmark、Gulbrandsen 和 Svenevei…...
IP如何挑?2025年海外专线IP如何购买?
你花了时间和预算买了IP,结果IP质量不佳,项目效率低下不说,还可能带来莫名的网络问题,是不是太闹心了?尤其是在面对海外专线IP时,到底怎么才能买到适合自己的呢?所以,挑IP绝对是个技…...
