pytorch的backward()的底层实现逻辑

自动微分是一种计算张量(tensors)的梯度(gradients)的技术,它在深度学习中非常有用。自动微分的基本思想是:
- 自动微分会记录数据(张量)和所有执行的操作(以及产生的新张量)在一个由函数(Function)对象组成的有向无环图(DAG)中。在这个图中,叶子节点是输入张量,根节点是输出张量。通过从根节点到叶子节点追踪这个图,可以使用链式法则(chain rule)自动地计算梯度。
- 在前向传播(forward pass)中,自动微分同时做两件事:
- 运行请求的操作来计算一个结果张量,以及
- 在 DAG 中保留操作的梯度函数。
- 在 DAG 中保留操作的梯度函数,这就是说,当你给自动微分一个张量和一个操作,它不仅会计算出结果张量,还会记住这个操作的梯度函数,也就是这个操作对输入张量的导数。例如,如果你给自动微分一个张量 x = [1, 2, 3] 和一个操作 y = x + 1,它不仅会计算出 y = [2, 3, 4],还会记住这个操作的梯度函数是 dy/dx = 1,也就是说,y 对 x 的导数是 1。这样,当你需要计算梯度时,自动微分就可以根据这个梯度函数来计算出结果张量对输入张量的梯度。
- 在PyTorch中,DAG是动态的。需要注意的一点是,图是从头开始重新创建的;在每个
.backward()调用之后,autograd开始填充一个新的图。 - 后向传播开始于当在 DAG 的根节点上调用 .backward() 方法。这个方法会触发自动微分开始计算梯度。
- 自动微分会从每个 .grad_fn 中计算梯度,这个 .grad_fn 是一个函数对象,它保存了操作的梯度函数。例如,如果一个操作是 y = x + 1,那么它的 .grad_fn 就是 dy/dx = 1。
- 自动微分会将计算出的梯度累加到相应张量的 .grad 属性中,这个 .grad 属性是一个张量,它保存了结果张量对输入张量的梯度。例如,如果一个结果张量是 y = [2, 3, 4],那么它的 .grad 属性就是 [1, 1, 1],表示 y 对 x 的梯度是 1。
- 使用链式法则(chain rule),自动微分会一直向后传播,直到到达叶子张量。链式法则是一种数学公式,它可以将复合函数的梯度分解为简单函数的梯度的乘积。例如,如果一个复合函数是 z = f(g(x)),那么它的梯度是 dz/dx = dz/dg * dg/dx。
import torch
import torch.nn as nn
M = nn.Linear(2, 2) # neural network module
M.eval() # set M to evaluation mode
with torch.no_grad(): # disable gradient computationfor param in M.parameters(): # loop over all parametersparam.fill_(1) # fill the parameter with 1
M.requires_grad_(False)a = torch.tensor([1., 2.], requires_grad=True) # leaf node
b = torch.tensor([13., 32.], requires_grad=True) # leaf node
c = M(a) # non-leaf node
c2 = M(b) # non-leaf node
d = c * 2 # non-leaf node
d.sum().backward() # compute gradients
print(a.grad)
print(b.grad)
print(c.grad)
print(d.grad)
print(M.weight.grad) # None
构建计算图:当我们调用backward()方法时,PyTorch会自动构建从叶子节点a到损失值d.sum()的计算图,这是一个有向无环图,表示了各个张量之间的运算关系。计算图中还包含了两个中间变量c和d,它们是由a经过M模型的前向传播得到的。计算图的作用是记录反向传播的路径,以便于计算梯度。 计算梯度:在计算图中,每个张量都有一个属性grad,用于存储它的梯度值。当我们调用backward()方法时,PyTorch会沿着计算图按照链式法则计算并填充每个张量的grad属性。由于我们只对叶子节点a的梯度感兴趣,所以只有a的grad属性会被计算出来,而中间变量c和d的grad属性会被忽略。a的grad属性的值是损失值d.sum()对a的偏导数,表示了a的变化对损失值的影响。
相关文章:
pytorch的backward()的底层实现逻辑
自动微分是一种计算张量(tensors)的梯度(gradients)的技术,它在深度学习中非常有用。自动微分的基本思想是: 自动微分会记录数据(张量)和所有执行的操作(以及产生的新张…...
SqlServer_idea连接问题
问题描述: sqlServer安装之后可以使用navicat进行连接idea使用账户密码进行登录连接失败 问题解决: 先使用sqlServer管理工具进行登录 使用window认证连接修改账户密码 启用该登录名 这时idea还是无法连接,还需要如下配置 打开sqlserve…...
认识.NET Aspire:高效构建云原生应用的利器
简介 在几天前的.NET 8发布会上,来自微软的Glenn Condron和David Fowler为我们演示了.NET Aspire,在Visual Studio的帮助下,它展现出了惊人的开发效率。 短短的十分钟内,David现场演示了如何轻松创建了一个具有服务发现…...
CNN(卷积神经网络)、RNN(循环神经网络)、DNN(深度神经网络)的内部网络结构有什么区别?
【导师不教?我来教!】同济计算机博士半小时就教会了我五大深度神经网络,CNN/RNN/GAN/transformer/LSTM一次学会,简直不要太强!_哔哩哔哩_bilibili了解的五大神经网络,整理笔记如下: 视频是唐宇…...
【CSH 入门基础 8 -- csh 中 set 与 setenv 的区别 】
文章目录 set 命令setenv 命令区别设置系统路径变量PATH添加单个路径设置多个路径 举例例子:编辑 .cshrc 文件 设置文件路径设置和使用局部变量永久设置变量 在 csh(C shell)和它的变体 tcsh(增强型 C shell)中&#x…...
Vue 2.0的源码构建
Vue.js 源码是基于 Rollup 构建的,它的构建相关配置都在 scripts 目录下。 1. 构建脚本 通常一个基于 NPM 托管的项目都会有一个 package.json 文件,它是对项目的描述文件,它的内容实际上是一个标准的 JSON 对象。 我们通常会配置 script …...
Kubernetes Gateway API 攻略:解锁集群流量服务新维度!
Kubernetes Gateway API 刚刚 GA,旨在改进将集群服务暴露给外部的过程。这其中包括一套更标准、更强大的 API资源,用于管理已暴露的服务。在这篇文章中,我将介绍 Gateway API 资源,并以 Istio 为例来展示这些资源是如何关联的。通…...
直播间弹幕直播游戏开发教程
随着直播技术的不断发展,交互式弹幕直播游戏成为吸引用户参与的新兴方式。这种游戏融合了实时弹幕互动和直播视频,为观众和主播提供了更加丰富的互动体验。在这篇文章中,我们将探讨从概念到实现的步骤,帮助你打造一款引人入胜的交…...
通过AppLink把拼多多热门榜单商品同步至小红书
上篇说到AppLink当中定时调度方式如何配置,这次来演示一下,如何把热门榜单信息同步至小红书 1.拉取一个定时器作为触发动作,通过配置定时器调度时间将定时策略配置为每天执行一次 2.触发动作完成后通过好单库获取拼多多每日热门榜单…...
力扣题目学习笔记(OC + Swift)
训练思维,提高编程能力,不为刷题而刷题 文章目录 1. 两数之和Swift版本OC版本 2. 两数相加Swift实现OC实现 3.无重复字符的最长子串SwiftOC 4.寻找两个正序数组的中位数SwiftOC 1. 两数之和 给定一个整数数组 nums 和一个整数目标值 target,请…...
20. Spring源码篇之@Lookup详解
简介 Lookup注解可能平时开发中大家接触的少,但是又确实挺有用的,比如我们一个单例Bean注入了一个原型Bean,原型Bean的效果其实是会失效的,因为单例Bean一开始就实例化好了,后面也不会再变化,但我们可能需…...
2.5计划任务远程管理
2.5计划任务/远程管理 一、计划任务 1、计划任务概念解析 在Linux操作系统中,除了用户即时执行的命令操作以外,还可以配置在指定的时间、指定的日期 执行预先计划好的系统管理任务(如定期备份、定期采集监测数据)。RHEL6系统中…...
光伏、储能双层优化配置接入配电网研究(附带Matlab代码)
由于能源的日益匮乏,电力需求的不断增长等,配电网中分布式能源渗透率不断提高,且逐渐向主动配电网方向发展。此外,需求响应(demand response,DR)的加入对配电网的规划运行也带来了新的因素。因此,如何综合考…...
低代码服务商,中小型数字化软件服务商的新出路
数字化时代大背景下,企业信息化向数字化转型成为所有企业发展的必由之路,企业在对业务模式、流程、组织形式、信息技术等方面进行重新定义时,软件必然参与价值创造的全过程,这势必驱使软件成为推动数字化转型的“引擎”࿰…...
Arcgis 日常天坑问题2——三维场景不能不能加载kml图层,着手解决这个问题
arcgis js api官网介绍kml图层的地址: shttps://developers.arcgis.com/javascript/latest/api-reference/esri-layers-KMLLayer.html从文档里看到kml图层有诸多限制,比较重要的两点是: 1、不能在三维场景(SceneView࿰…...
Ubuntu22.04 交叉编译GCC13.2.0 for Rv1126
一、安装Ubuntu22.04 sudo apt install vim net-tools openssh-server 二、安装必要项 sudo apt update sudo apt upgrade sudo apt install build-essential gawk git texinfo bison flex 三、下载必备软件包 1.glibc https://ftp.gnu.org/gnu/glibc/glibc-2.38.tar.gz…...
什么是EVM?以太坊EVM合约交互
目录 什么是EVM? 为什么 EVM 很重要? 结论 虚拟机引擎 以太坊虚拟机...
Vue Treeselect el-tree-select 多选 只选中第三级
话不多说,直接看代码: <Treeselect v-model"scope.row.mdeptIds" :normalizernormalizer :defaultExpandLevel"2" :disable-branch-nodes"true" :multiple"true":append-to-body"true" :z-index"9999" style…...
Stable Diffusion专场公开课
从SD原理、本地部署到其二次开发 分享时间:11月25日14:00-17:00 分享大纲 从扩散模型DDPM起步理解SD背后原理 SD的本地部署:在自己电脑上快速搭建、快速出图如何基于SD快速做二次开发(以七月的AIGC模特生成系统为例) 分享人简介 July&#…...
【Typroa使用】Typroa+PicGo-Core(command line)+gitee免费图片上传配置
TyproaPicGo-Core(command line)gitee免费图片上传配置 本文是在win10系统下配置typroapicGo-Core(command line)gitee图片上传的教程。需要的环境和工具有: gitee账号,新建仓库及token令牌;已经安装了的typroa,需要0.9.98版本以上…...
【根据当天日期输出明天的日期(需对闰年做判定)。】2022-5-15
缘由根据当天日期输出明天的日期(需对闰年做判定)。日期类型结构体如下: struct data{ int year; int month; int day;};-编程语言-CSDN问答 struct mdata{ int year; int month; int day; }mdata; int 天数(int year, int month) {switch (month){case 1: case 3:…...
Flask RESTful 示例
目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题: 下面创建一个简单的Flask RESTful API示例。首先,我们需要创建环境,安装必要的依赖,然后…...
TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
Unity3D中Gfx.WaitForPresent优化方案
前言 在Unity中,Gfx.WaitForPresent占用CPU过高通常表示主线程在等待GPU完成渲染(即CPU被阻塞),这表明存在GPU瓶颈或垂直同步/帧率设置问题。以下是系统的优化方案: 对惹,这里有一个游戏开发交流小组&…...
【Java学习笔记】Arrays类
Arrays 类 1. 导入包:import java.util.Arrays 2. 常用方法一览表 方法描述Arrays.toString()返回数组的字符串形式Arrays.sort()排序(自然排序和定制排序)Arrays.binarySearch()通过二分搜索法进行查找(前提:数组是…...
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility
Cilium动手实验室: 精通之旅---20.Isovalent Enterprise for Cilium: Zero Trust Visibility 1. 实验室环境1.1 实验室环境1.2 小测试 2. The Endor System2.1 部署应用2.2 检查现有策略 3. Cilium 策略实体3.1 创建 allow-all 网络策略3.2 在 Hubble CLI 中验证网络策略源3.3 …...
Python爬虫(一):爬虫伪装
一、网站防爬机制概述 在当今互联网环境中,具有一定规模或盈利性质的网站几乎都实施了各种防爬措施。这些措施主要分为两大类: 身份验证机制:直接将未经授权的爬虫阻挡在外反爬技术体系:通过各种技术手段增加爬虫获取数据的难度…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
C# 类和继承(抽象类)
抽象类 抽象类是指设计为被继承的类。抽象类只能被用作其他类的基类。 不能创建抽象类的实例。抽象类使用abstract修饰符声明。 抽象类可以包含抽象成员或普通的非抽象成员。抽象类的成员可以是抽象成员和普通带 实现的成员的任意组合。抽象类自己可以派生自另一个抽象类。例…...
【Zephyr 系列 10】实战项目:打造一个蓝牙传感器终端 + 网关系统(完整架构与全栈实现)
🧠关键词:Zephyr、BLE、终端、网关、广播、连接、传感器、数据采集、低功耗、系统集成 📌目标读者:希望基于 Zephyr 构建 BLE 系统架构、实现终端与网关协作、具备产品交付能力的开发者 📊篇幅字数:约 5200 字 ✨ 项目总览 在物联网实际项目中,**“终端 + 网关”**是…...
