037、目标检测-SSD实现
之——实现
目录
之——简单实现
杂谈
正文
1.类别预测层
2.边界框预测
3.多尺度输出联结做预测(提高预测效率)
4.多尺度实现
5.基本网络块
6.完整模型
杂谈
原理查看:037、目标检测-算法速览-CSDN博客

正文
1.类别预测层
类别预测的实现,锚框类别数num_classes+1背景:

该图层使用填充为1的3×3的卷积层。此卷积层的输入和输出的宽度和高度保持不变,只是改变了通道数:
import torch
import torchvision
from torch import nn
from torch.nn import functional as F
from d2l import torch as d2ldef cls_predictor(num_inputs, num_anchors, num_classes):return nn.Conv2d(num_inputs, num_anchors * (num_classes + 1),kernel_size=3, padding=1)
2.边界框预测
把边界框也看做一个预测问题,要预测的值就是两个坐标四个值,所以输出通道为4*num_anchors:
def bbox_predictor(num_inputs, num_anchors):return nn.Conv2d(num_inputs, num_anchors * 4, kernel_size=3, padding=1)
3.多尺度输出联结做预测(提高预测效率)
单发多框检测使用多尺度特征图来生成锚框并预测其类别和偏移量。 在不同的尺度下,特征图的形状或以同一单元为中心的锚框的数量可能会有所不同。 因此,不同尺度下预测输出的形状可能会有所不同。
def forward(x, block):return block(x)Y1 = forward(torch.zeros((2, 8, 20, 20)), cls_predictor(8, 5, 10))
Y2 = forward(torch.zeros((2, 16, 10, 10)), cls_predictor(16, 3, 10))
Y1.shape, Y2.shape
![]()
通道维包含中心相同的锚框的预测结果。我们首先将通道维移到最后一维。 因为不同尺度下批量大小仍保持不变,我们可以将预测结果转成二维的(批量大小,高×宽×通道数)的格式,以方便之后在维度1上的连结 :
def flatten_pred(pred):return torch.flatten(pred.permute(0, 2, 3, 1), start_dim=1)def concat_preds(preds):return torch.cat([flatten_pred(p) for p in preds], dim=1)
4.多尺度实现
为了在多个尺度下检测目标,我们在下面定义了高和宽减半块down_sample_blk,该模块将输入特征图的高度和宽度减半。
def down_sample_blk(in_channels, out_channels):blk = []for _ in range(2):blk.append(nn.Conv2d(in_channels, out_channels,kernel_size=3, padding=1))blk.append(nn.BatchNorm2d(out_channels))blk.append(nn.ReLU())in_channels = out_channelsblk.append(nn.MaxPool2d(2))return nn.Sequential(*blk)
跟当时VGG的实现极其类似,效果:
forward(torch.zeros((2, 3, 20, 20)), down_sample_blk(3, 10)).shape

5.基本网络块
基本网络块用于从输入图像中抽取特征。 为了计算简洁,我们构造了一个小的基础网络,该网络串联3个高和宽减半块,并逐步将通道数翻倍。 给定输入图像的形状为256×256,此基本网络块输出的特征图形状为32×32:
def base_net():blk = []num_filters = [3, 16, 32, 64]for i in range(len(num_filters) - 1):blk.append(down_sample_blk(num_filters[i], num_filters[i+1]))return nn.Sequential(*blk)forward(torch.zeros((2, 3, 256, 256)), base_net()).shape
6.完整模型
完整的单发多框检测模型由五个模块组成。每个块生成的特征图既用于生成锚框,又用于预测这些锚框的类别和偏移量。在这五个模块中,第一个是基本网络块,第二个到第四个是高和宽减半块,最后一个模块使用全局最大池化将高度和宽度都降到1。
def get_blk(i):if i == 0:blk = base_net()elif i == 1:blk = down_sample_blk(64, 128)elif i == 4:blk = nn.AdaptiveMaxPool2d((1,1))else:blk = down_sample_blk(128, 128)return blk
每个块的前向传播:为每个块定义前向传播。与图像分类任务不同,此处的输出包括:CNN特征图Y;在当前尺度下根据Y生成的锚框;预测的这些锚框的类别和偏移量(基于Y):
def blk_forward(X, blk, size, ratio, cls_predictor, bbox_predictor):Y = blk(X)anchors = d2l.multibox_prior(Y, sizes=size, ratios=ratio)cls_preds = cls_predictor(Y)bbox_preds = bbox_predictor(Y)return (Y, anchors, cls_preds, bbox_preds)
一个较接近顶部的多尺度特征块是用于检测较大目标的,因此需要生成更大的锚框。 在上面的前向传播中,在每个多尺度特征块上,我们通过调用的multibox_prior函数的sizes参数传递两个比例值的列表。
sizes = [[0.2, 0.272], [0.37, 0.447], [0.54, 0.619], [0.71, 0.79],[0.88, 0.961]]
ratios = [[1, 2, 0.5]] * 5
num_anchors = len(sizes[0]) + len(ratios[0]) - 1
汇总:
class TinySSD(nn.Module):def __init__(self, num_classes, **kwargs):super(TinySSD, self).__init__(**kwargs)self.num_classes = num_classesidx_to_in_channels = [64, 128, 128, 128, 128]for i in range(5):# 即赋值语句self.blk_i=get_blk(i)setattr(self, f'blk_{i}', get_blk(i))setattr(self, f'cls_{i}', cls_predictor(idx_to_in_channels[i],num_anchors, num_classes))setattr(self, f'bbox_{i}', bbox_predictor(idx_to_in_channels[i],num_anchors))def forward(self, X):anchors, cls_preds, bbox_preds = [None] * 5, [None] * 5, [None] * 5for i in range(5):# getattr(self,'blk_%d'%i)即访问self.blk_iX, anchors[i], cls_preds[i], bbox_preds[i] = blk_forward(X, getattr(self, f'blk_{i}'), sizes[i], ratios[i],getattr(self, f'cls_{i}'), getattr(self, f'bbox_{i}'))anchors = torch.cat(anchors, dim=1)cls_preds = concat_preds(cls_preds)cls_preds = cls_preds.reshape(cls_preds.shape[0], -1, self.num_classes + 1)bbox_preds = concat_preds(bbox_preds)return anchors, cls_preds, bbox_preds
训练:
batch_size = 32
train_iter, _ = d2l.load_data_bananas(batch_size)device, net = d2l.try_gpu(), TinySSD(num_classes=1)
trainer = torch.optim.SGD(net.parameters(), lr=0.2, weight_decay=5e-4)#损失函数和评价函数
cls_loss = nn.CrossEntropyLoss(reduction='none')
bbox_loss = nn.L1Loss(reduction='none')def calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels, bbox_masks):batch_size, num_classes = cls_preds.shape[0], cls_preds.shape[2]cls = cls_loss(cls_preds.reshape(-1, num_classes),cls_labels.reshape(-1)).reshape(batch_size, -1).mean(dim=1)bbox = bbox_loss(bbox_preds * bbox_masks,bbox_labels * bbox_masks).mean(dim=1)return cls + bboxdef cls_eval(cls_preds, cls_labels):# 由于类别预测结果放在最后一维,argmax需要指定最后一维。return float((cls_preds.argmax(dim=-1).type(cls_labels.dtype) == cls_labels).sum())def bbox_eval(bbox_preds, bbox_labels, bbox_masks):return float((torch.abs((bbox_labels - bbox_preds) * bbox_masks)).sum())#训练
num_epochs, timer = 20, d2l.Timer()
animator = d2l.Animator(xlabel='epoch', xlim=[1, num_epochs],legend=['class error', 'bbox mae'])
net = net.to(device)
for epoch in range(num_epochs):# 训练精确度的和,训练精确度的和中的示例数# 绝对误差的和,绝对误差的和中的示例数metric = d2l.Accumulator(4)net.train()for features, target in train_iter:timer.start()trainer.zero_grad()X, Y = features.to(device), target.to(device)# 生成多尺度的锚框,为每个锚框预测类别和偏移量anchors, cls_preds, bbox_preds = net(X)# 为每个锚框标注类别和偏移量bbox_labels, bbox_masks, cls_labels = d2l.multibox_target(anchors, Y)# 根据类别和偏移量的预测和标注值计算损失函数l = calc_loss(cls_preds, cls_labels, bbox_preds, bbox_labels,bbox_masks)l.mean().backward()trainer.step()metric.add(cls_eval(cls_preds, cls_labels), cls_labels.numel(),bbox_eval(bbox_preds, bbox_labels, bbox_masks),bbox_labels.numel())cls_err, bbox_mae = 1 - metric[0] / metric[1], metric[2] / metric[3]animator.add(epoch + 1, (cls_err, bbox_mae))
print(f'class err {cls_err:.2e}, bbox mae {bbox_mae:.2e}')
print(f'{len(train_iter.dataset) / timer.stop():.1f} examples/sec on 'f'{str(device)}')
结果:

小结
实际的手敲可能再也不会了,但是一些习惯和思路还是值得保持,锚框、分类、框预测的算法是目标检测算法的核心,全局最大池化在通道向输出数的整合上起到了很好的作用。
相关文章:
037、目标检测-SSD实现
之——实现 目录 之——简单实现 杂谈 正文 1.类别预测层 2.边界框预测 3.多尺度输出联结做预测(提高预测效率) 4.多尺度实现 5.基本网络块 6.完整模型 杂谈 原理查看:037、目标检测-算法速览-CSDN博客 正文 1.类别预测层 类别预测…...
【开题报告】基于SpringBoot的摄影作品展示网站的设计与实现
1.研究背景 随着社会的发展和人民生活水平的提高,摄影作品已成为一种非常受欢迎的艺术形式。越来越多的人开始对摄影艺术产生兴趣,并且拥有了自己的摄影作品。然而,如何将这些摄影作品展示出来并与其他摄影爱好者进行交流,成为了…...
SVR和SVM是什么关系
SVR(Support Vector Regression)和 SVM(Support Vector Machines)是支持向量机(Support Vector Machine)的两个不同方面,分别用于回归和分类问题。 SVM (Support Vector Machines): SVM是一种用…...
Flutter 3.16 中带来的更新
Flutter 3.16 中带来的更新 目 录 1. 概述2. 框架更新2.1 Material 3 成为新默认2.2 支持 Material 3 动画2.3 TextScaler2.4 SelectionArea 更新2.5 MatrixTransition 动画2.6 滚动更新2.7 在编辑菜单中添加附加选项2.8 PaintPattern 添加到 flutter_test 3. 引擎更新…...
批量插入数据与分页的原理及推导
批量插入数据 【1】准备数据 class Book(models.Model):title models.CharField(max_length32) 【2】一条一条插入 后端 def ab_many(request):# (1)先给Book表插入一万条数据for i in range(1000):models.Book.objects.create(titlef第{i}本书)# (2)将所有数据查询到并展…...
SMART PLC累计流量功能块(梯形积分法+浮点数累加精度控制)
S7-200SMART PLC数值积分器相关知识请参考下面文章链接: SMART PLC数值积分器功能块(矩形+梯形积分法完整源代码)-CSDN博客文章浏览阅读153次。PLC的数值积分器算法也可以参考下面文章链接:PLC算法系列之数值积分器(Integrator)-CSDN博客数值积分和微分在工程上的重要意义不…...
【金融分析】Python:病人预约安排政策 | 金融模拟分析
目录: 说明(Instructions) 问题描述(Problem Description) 仿真设置(Simulation Setting) 仿真过程的 Python 代码...
后端接口测试,令牌校验住,获取tocken 接口的方式
post : http://127.0.0.1:端口号/login { "username":"admin", "password":"admin123", "code":"3", "uuid":"966c34e409434f15942ec29a284da0a6" } headers tocken false...
Ghidra逆向工具配置 MacOS 的启动台显示(Python)
写在前面 通过 ghidra 工具, 但是只能用命令行启动, 不太舒服, 写个脚本生成 MacOS 的 app 格式并导入启动台. 不算复杂, 主要是解析包的一些元信息还有裁剪软件图标(通过 MacOS 自带的 API) 脚本 #!/opt/homebrew/bin/python3import os import re import subprocess as sp…...
关于交换芯片调试 tx_delay rx_delay 的一点经验
按照官方的介绍,需要用示波器 测量数据和时钟 实质相位差在2ns 左右,但是由于时钟 125M ,数据方波需要的示波器带宽更高,所以普通示波器是没有办法的,测试变形很大,所以调试的方法如下: 1.根据官方手册,先在设备树里设置跟手册示例一样的,保证ping的时候可以ping通,…...
【图像分类】【深度学习】【轻量级网络】【Pytorch版本】MobileNets_V2模型算法详解
【图像分类】【深度学习】【轻量级网络】【Pytorch版本】MobileNets_V2模型算法详解 文章目录 【图像分类】【深度学习】【轻量级网络】【Pytorch版本】MobileNets_V2模型算法详解前言MobleNet_V2讲解反向残差结构(Inverted Residuals)兴趣流形(Manifold of interest)线性瓶颈层…...
Spring Cloud 简介
1、简介 Spring CloudLevel up your Java code and explore what Spring can do for you.https://spring.io/projects/spring-cloud Spring Cloud 是一系列有序框架的集合,其主要的设施有,服务发现与注册,配置中心,消息总…...
Redis从入门到精通(二)- 入门篇
文章目录 0. 前言1. 入门篇[【入门篇】1.1 redis 基础数据类型详解和示例](https://icepip.blog.csdn.net/article/details/134438573)[【入门篇】1.2 Redis 客户端之 Jedis 详解和示例](https://icepip.blog.csdn.net/article/details/134440061)[【入门篇】1.3 redis客户端之…...
SpringDoc基础配置和集成OAuth2登录认证教程
本期内容 学会通过注解和Java代码的方式添加SpringDoc配置。在swagger-ui提供的页面上提供OAuth2登录认证,在集成Security的情况下便捷获取access_token并在请求时按照OAuth2规范携带。 为什么集成OAuth2登录认证? 现在大部分教程是在swagger-ui页面添…...
链路聚合-静态和动态区别
链路聚合之动静态聚合方式 链路聚合组是由一组相同速率、以全双工方式工作的网口组成。 1、动态聚合: 动态聚合对接的双方通过交互LACP(链路聚合控制协议)协议报文,来协商聚合对接。 优点:对接双方相互交互端口状态信息,使端口…...
发币成功,记录一下~
N年前就听说了这样一种说法——“一个熟练的区块链工程师,10分钟就可以发出一个新的币” 以前仅仅是有这么一个认识,但当时并不特别关注这个领域。 最近系统性学习中,今天尝试发币成功啦,记录一下~ 发在 Sepolia Tes…...
一个完备的手游地形实现方案
一、地形几何方案:Terrain 与 Mesh 1.1 目前手游主流地形几何方案分析 先不考虑 LOD 等优化手段,目前地形的几何方案选择有如下几种: 使用 Unity 自带的 Terrain使用 Unity 自带的 Terrain,但是等美术资产完成后使用工具转为 M…...
vite vue3配置axios
准备 参考 安装axios yarn add axios中文官网 src下新建request文件夹,该文件下新建index.ts import axios from axios; import { ElMessage } from element-plus;// const errorCodeType function (code: number): string { // let errMessage: string 未知…...
使用 C 语言快速排序将字符串按照 ASCII 码升序排列
示例代码: #include <stdio.h> #include <string.h> #include <stdlib.h>static Comp(const void *a, const void *b) {char *pa (char *)a;char *pb (char *)b;return strcmp(a, b); }int main(void) {char strs[3][10] { "bd", &q…...
自动化运维中间件架构概况
自动化运维中间件架构概况 kubernetesjenkins 安装k8s后 设置 Jenkins 任务: 在 Jenkins 中创建一个新的任务: 配置源代码管理:选择 Git,并提供 GitLab 仓库的 URL、凭据和分支信息。配置构建步骤:选择 Maven 构建,…...
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする
日语学习-日语知识点小记-构建基础-JLPT-N4阶段(33):にする 1、前言(1)情况说明(2)工程师的信仰2、知识点(1) にする1,接续:名词+にする2,接续:疑问词+にする3,(A)は(B)にする。(2)復習:(1)复习句子(2)ために & ように(3)そう(4)にする3、…...
CocosCreator 之 JavaScript/TypeScript和Java的相互交互
引擎版本: 3.8.1 语言: JavaScript/TypeScript、C、Java 环境:Window 参考:Java原生反射机制 您好,我是鹤九日! 回顾 在上篇文章中:CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...
Linux-07 ubuntu 的 chrome 启动不了
文章目录 问题原因解决步骤一、卸载旧版chrome二、重新安装chorme三、启动不了,报错如下四、启动不了,解决如下 总结 问题原因 在应用中可以看到chrome,但是打不开(说明:原来的ubuntu系统出问题了,这个是备用的硬盘&a…...
Unit 1 深度强化学习简介
Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库,例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体,比如 SnowballFight、Huggy the Do…...
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别
OpenPrompt 和直接对提示词的嵌入向量进行训练有什么区别 直接训练提示词嵌入向量的核心区别 您提到的代码: prompt_embedding = initial_embedding.clone().requires_grad_(True) optimizer = torch.optim.Adam([prompt_embedding...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信
文章目录 Linux C语言网络编程详细入门教程:如何一步步实现TCP服务端与客户端通信前言一、网络通信基础概念二、服务端与客户端的完整流程图解三、每一步的详细讲解和代码示例1. 创建Socket(服务端和客户端都要)2. 绑定本地地址和端口&#x…...
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习)
Aspose.PDF 限制绕过方案:Java 字节码技术实战分享(仅供学习) 一、Aspose.PDF 简介二、说明(⚠️仅供学习与研究使用)三、技术流程总览四、准备工作1. 下载 Jar 包2. Maven 项目依赖配置 五、字节码修改实现代码&#…...
苹果AI眼镜:从“工具”到“社交姿态”的范式革命——重新定义AI交互入口的未来机会
在2025年的AI硬件浪潮中,苹果AI眼镜(Apple Glasses)正在引发一场关于“人机交互形态”的深度思考。它并非简单地替代AirPods或Apple Watch,而是开辟了一个全新的、日常可接受的AI入口。其核心价值不在于功能的堆叠,而在于如何通过形态设计打破社交壁垒,成为用户“全天佩戴…...
手机平板能效生态设计指令EU 2023/1670标准解读
手机平板能效生态设计指令EU 2023/1670标准解读 以下是针对欧盟《手机和平板电脑生态设计法规》(EU) 2023/1670 的核心解读,综合法规核心要求、最新修正及企业合规要点: 一、法规背景与目标 生效与强制时间 发布于2023年8月31日(OJ公报&…...
