当前位置: 首页 > news >正文

CAN基础知识

CAN 简介

CAN 是 Controller Area Network 的缩写(以下称为 CAN),是 ISO 国际标准化的串行通信 协议。在当前的汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种 各样的电子控制系统被开发了出来。由于这些系统之间通信所用的数据类型及对可靠性的要求 不尽相同,由多条总线构成的情况很多,线束的数量也随之增加。为适应“减少线束的数量”、 “通过多个 LAN,进行大量数据的高速通信”的需要,1986 年德国电气商博世公司开发出面向 汽车的 CAN 通信协议。此后,CAN 通过 ISO11898 及 ISO11519 进行了标准化,现在在欧洲已 是汽车网络的标准协议。

现在,CAN 的高性能和可靠性已被认同,并被广泛地应用于工业自动化、船舶、医疗设备、 工业设备等方面。现场总线是当今自动化领域技术发展的热点之一,被誉为自动化领域的计算 机局域网。它的出现为分布式控制系统实现各节点之间实时、可靠的数据通信提供了强有力的 技术支持。

CAN 协议具有一下特点:

1) 多主控制。在总线空闲时,所有单元都可以发送消息(多主控制),而两个以上的单 元同时开始发送消息时,根据标识符(Identifier以下称为ID)决定优先级。ID并不是表示 发送的目的地址,而是表示访问总线的消息的优先级。两个以上的单元同时开始发送消息 时,对各消息ID的每个位进行逐个仲裁比较。仲裁获胜(被判定为优先级最高)的单元 可继续发送消息,仲裁失利的单元则立刻停止发送而进行接收工作。

2) 系统的柔软性。与总线相连的单元没有类似于“地址”的信息。因此在总线上增加单元 时,连接在总线上的其它单元的软硬件及应用层都不需要改变。

3) 通信速度较快,通信距离远。最高1Mbps(距离小于40M),最远可达10KM(速率低 于5Kbps)。

4) 具有错误检测、错误通知和错误恢复功能。所有单元都可以检测错误(错误检测功 能),检测出错误的单元会立即同时通知其他所有单元(错误通知功能),正在发送消息的 单元一旦检测出错误,会强制结束当前的发送。强制结束发送的单元会不断反复地重新发 送此消息直到成功发送为止(错误恢复功能)。

5) 故障封闭功能。CAN可以判断出错误的类型是总线上暂时的数据错误(如外部噪声 等)还是持续的数据错误(如单元内部故障、驱动器故障、断线等)。由此功能,当总线 上发生持续数据错误时,可将引起此故障的单元从总线上隔离出去。

6) 连接节点多。CAN总线是可同时连接多个单元的总线。可连接的单元总数理论上是 没有限制的。但实际上可连接的单元数受总线上的时间延迟及电气负载的限制。降低通信 速度,可连接的单元数增加;提高通信速度,则可连接的单元数减少。

正是因为 CAN 协议的这些特点,使得 CAN 特别适合工业过程监控设备的互连,因此,越 来越受到工业界的重视,并已公认为最有前途的现场总线之一。

CAN 协议经过 ISO 标准化后有两个标准:ISO11898 标准(高速 CAN)和 ISO11519-2 标准 (低速CAN)。其中 ISO11898 是针对通信速率为125Kbps~1Mbps 的高速通信标准,而 ISO11519- 2 是针对通信速率为 125Kbps 以下的低速通信标准。

CAN物理层

本章,我们使用的是 ISO11898 标准,也就是高速 CAN,其拓扑图如图 37.1.1.1 所示。从上图可知,高速 CAN 总线呈现的是一个闭环结构,总线是由两根线 CAN_High 和 CAN_Low 组成,且在总线两端各串联了 120Ω的电阻(用于阻抗匹配,减少回波反射),同时 总线上可以挂载多个节点。每个节点都有 CAN 收发器以及 CAN 控制器,CAN 控制器通常是 MCU 的外设,集成在芯片内部;CAN 收发器则是需要外加芯片转换电路。

CAN 类似 RS485 也是通过差分信号传输数据。根据 CAN 总线上两根线的电位差来判断总 线电平。总线电平分为显性电平和隐性电平,二者必居其一。这是属于物理层特征,ISO11898 物理层特性如图 37.1.1.2 所示:从该特性可以看出,显性电平对应逻辑 0,CAN_H 和 CAN_L 之差为 2V 左右。而隐性电 平对应逻辑 1,CAN_H 和 CAN_L 之差为 0V。在总线上显性电平具有优先权,只要有一个单元 输出显性电平,总线上即为显性电平。而隐形电平则具有包容的意味,只有所有的单元都输出 隐性电平,总线上才为隐性电平(显性电平比隐性电平更强)

CAN 协议层

CAN 协议是通过以下 5 种类型的帧进行的:

另外,数据帧和遥控帧有标准格式和扩展格式两种格式。标准格式有 11 个位的标识符(ID), 扩展格式有 29 个位的 ID。各种帧的用途如表 37.1.2.1 所示:由于篇幅所限,我们这里仅对数据帧进行详细介绍,数据帧一般由 7 个段构成,即:

帧起始。表示数据帧开始的段

仲裁段表示该帧优先级的段。

控制段。表示数据的字节数及保留位的段。

数据段。数据的内容,一帧可发送 0~8 个字节的数据。

CRC 段。检查帧的传输错误的段。

ACK 段。表示确认正常接收的段。

帧结束。表示数据帧结束的段。

数据帧的构成如图 37.1.2.1 所示:图中 D 表示显性电平,R 表示隐形电平(下同)。

帧起始,这个比较简单,标准帧和扩展帧都是由 1 个位的显性电平表示帧起始。

仲裁段,表示数据优先级的段,标准帧和扩展帧格式在本段有所区别,如图 37.1.2.2 所示:标准格式的 ID 有 11 个位。禁止高 7 位都为隐性(禁止设定:ID=1111111XXXX)。扩展格 式的 ID 有 29 个位。基本 ID 从 ID28 到 ID18,扩展 ID 由 ID17 到 ID0 表示。基本 ID 和标准格 式的 ID 相同。禁止高 7 位都为隐性(禁止设定:基本 ID=1111111XXXX)。

其中 RTR 位用于标识是否是远程帧(0,数据帧;1,远程帧),IDE 位为标识符选择位(0, 使用标准标识符;1,使用扩展标识符),SRR 位为代替远程请求位,为隐性位,它代替了标准 帧中的 RTR 位。

控制段,由 6 个位构成,表示数据段的字节数。标准帧和扩展帧的控制段稍有不同,如图 37.1.2.3 所示:上图中,r0 和 r1 为保留位,必须全部以显性电平发送,但是接收端可以接收显性、隐性及 任意组合的电平。DLC 段为数据长度表示段,高位在前,DLC 段有效值为 0~8,但是接收方接 收到 9~15 的时候并不认为是错误。

数据段,该段可包含 0~8 个字节的数据。从最高位(MSB)开始输出,标准帧和扩展帧在 这个段的定义都是一样的。如图 37.1.2.4 所示:

 CRC 段,该段用于检查帧传输错误。由 15 个位的 CRC 顺序和 1 个位的 CRC 界定符(用 于分隔的位)组成,标准帧和扩展帧在这个段的格式也是相同的。如图 37.1.2.5 所示:此段 CRC 的值计算范围包括:帧起始、仲裁段、控制段、数据段。接收方以同样的算法计 算 CRC 值并进行比较,不一致时会通报错误。

ACK 段,此段用来确认是否正常接收。由 ACK 槽(ACK Slot)和 ACK 界定符 2 个位组成。 标准帧和扩展帧在这个段的格式也是相同的。如图 37.1.2.6 所示:发送单元的 ACK,发送 2 个位的隐性位,而接收到正确消息的单元在 ACK 槽(ACK Slot) 发送显性位,通知发送单元正常接收结束,这个过程叫发送 ACK/返回 ACK。发送 ACK 的是在 既不处于总线关闭态也不处于休眠态的所有接收单元中,接收到正常消息的单元(发送单元不 发送 ACK)。所谓正常消息是指不含填充错误、格式错误、CRC 错误的消息。

帧结束,这个段也比较简单,标准帧和扩展帧在这个段格式一样,由 7 个位的隐性位组成。

CAN 位时序

由发送单元在非同步的情况下发送的每秒钟的位数称为位速率。一个位可分为 4 段。

⚫ 同步段(SS)

⚫ 传播时间段(PTS)

⚫ 相位缓冲段 1(PBS1)

⚫ 相位缓冲段 2(PBS2)

这些段又由可称为 Time Quantum(以下称为 Tq)的最小时间单位构成。

1 位分为 4 个段,每个段又由若干个 Tq 构成,这称为位时序。

1 位由多少个 Tq 构成、每个段又由多少个 Tq 构成等,可以任意设定位时序。通过设定位 时序,多个单元可同时采样,也可任意设定采样点。各段的作用和 Tq 数如表 37.1.2.2 所示:1 个位的构成如图 37.1.2.7 所示:上图的采样点,是指读取总线电平,并将读到的电平作为位值的点。位置在 PBS1 结束处。 根据这个位时序,我们就可以计算 CAN 通信的波特率了。

CAN 协议仲裁功能

在总线空闲态,最先开始发送消息的单元获得发送权。当多个单元同时开始发送时,各发 送单元从仲裁段的第一位开始进行仲裁。连续输出显性电平最多的单元可继续发送。实现过程, 如图 37.1.2.8 所示:上图中,单元 1 和单元 2 同时开始向总线发送数据,开始部分他们的数据格式是一样的, 故无法区分优先级,直到 T 时刻,单元 1 输出隐性电平,而单元 2 输出显性电平,此时单元 1 仲裁失利,立刻转入接收状态工作,不再与单元 2 竞争,而单元 2 则顺利获得总线使用权,继 续发送自己的数据。这就实现了仲裁,让连续发送显性电平多的单元获得总线使用权。

CAN 控制器

STM32F1 自带的是 bxCAN,即基本扩展 CAN。它支持 CAN 协议 2.0A 和 2.0B。CAN2.0A 只能处理标准数据帧,扩展帧的内容会识别错误;CAN2.0BActive 可以处理标准数据帧和扩展 数据帧;而 CAN2.0B passive 只能处理标准数据帧,扩展帧的内容会忽略。它的设计目标是,以 最小的 CPU 负荷来高效处理大量收到的报文。它也支持报文发送的优先级要求(优先级特性可 软件配置)。对于安全紧要的应用,bxCAN 提供所有支持时间触发通信模式所需的硬件功能。

STM32F1 的 bxCAN 的主要特点有:

⚫ 支持 CAN 协议 2.0A 和 2.0B 主动模式

⚫ 波特率最高达 1Mbps

⚫ 支持时间触发通信

⚫ 具有 3 个发送邮箱

⚫ 具有 3 级深度的 2 个接收 FIFO

⚫ 可变的过滤器组(最多 28 个)

在 STM32 互联型产品中,带有 2 个 CAN 控制器,而我们使用的 STM32F103ZET6 属于增 强型,不是互联型,只有 1 个 CAN 控制器。双 CAN 的框图如图 37.1.2.9 所示:从图中可以看出两个 CAN 都分别拥有自己的发送邮箱和接收 FIFO,但是他们共用 28 个 过滤器。通过 CAN_FMR 寄存器的设置,可以设置过滤器的分配方式。

STM32 的标识符过滤比较复杂,它的存在减少了 CPU 处理 CAN 通信的开销。STM32 的 过滤器组最多有 28 个(互联型),但是 STM32F103ZET6 只有 14 个(增强型),每个过滤器组 x 由 2 个 32 为寄存器,CAN_FxR1 和 CAN_FxR2 组成。

STM32F1 每个过滤器组的位宽都可以独立配置,以满足应用程序的不同需求。根据位宽的 不同,每个过滤器组可提供:

⚫ 1 个 32 位过滤器,包括:STDID[10:0]、EXTID[17:0]、IDE 和 RTR 位

⚫ 2 个 16 位过滤器,包括:STDID[10:0]、IDE、RTR 和 EXTID[17:15]位

此外过滤器可配置为:屏蔽位模式和标识符列表模式。

在屏蔽位模式下,标识符寄存器和屏蔽寄存器一起,指定报文标识符的任何一位,应该按 照“必须匹配”或“不用关心”处理。

而在标识符列表模式下,屏蔽寄存器也被当作标识符寄存器用。因此,不是采用一个标识 符加一个屏蔽位的方式,而是使用 2 个标识符寄存器。接收报文标识符的每一位都必须跟过滤 器标识符相同。

通过 CAN_FMR 寄存器,可以配置过滤器组的位宽和工作模式,如图 37.1.2.10 所示:为了过滤出一组标识符,应该设置过滤器组工作在屏蔽位模式。

为了过滤出一个标识符,应该设置过滤器组工作在标识符列表模式。应用程序不用的过滤 器组,应该保持在禁用状态。

过滤器组中的每个过滤器,都被编号为(叫做过滤器号,图 37.1.2.9 中的 n)从 0 开始,到某 个最大数值-取决于过滤器组的模式和位宽的设置。

举个简单的例子,我们设置过滤器组 0 工作在:1 个 32 为位过滤器-标识符屏蔽模式,然后 设置 CAN_F0R1=0XFFFF0000,CAN_F0R2=0XFF00FF00。其中存放到 CAN_F0R1 的值就是期 望收到的 ID,即我们希望收到的映像(STID+EXTID+IDE+RTR)最好是:0XFFFF0000。而 0XFF00FF00 就是设置我们需要必须关心的 ID,表示收到的映像,其位[31:24]和位[15:8]这 16 个位的必须和 CAN_F0R1 中对应的位一模一样,而另外的 16 个位则不关心,可以一样,也可 以不一样,都认为是正确的 ID,即收到的映像必须是 0XFFxx00xx,才算是正确的(x 表示不关 心),这里需要注意的是标识符选择位 IDE 和帧类型 RTR 需要一致。其情况如下图 37.1.2.11 所 示:接下来,我们看看 STM32 的 CAN 发送和接收的流程。

CAN 发送流程

CAN 发送流程为:程序选择 1 个空置的邮箱(TME=1)→设置标识符(ID),数据长度和 发送数据→设置 CAN_TIxR 的 TXRQ 位为 1,请求发送→邮箱挂号(等待成为最高优先级)→ 预定发送(等待总线空闲)→发送→邮箱空置。整个流程如图 37.1.2.12 所示:上图中,还包含了很多其他处理,发送中止请求(ABRQ=1)和发送失败处理等。通过这个 流程图,我们大致了解了 CAN 的发送流程,后面的数据发送,我们基本就是按照此流程来走。

CAN 接收流程

CAN 接收到的有效报文,被存储在 3 级邮箱深度的 FIFO 中。FIFO 完全由硬件来管理,从 而节省了 CPU 的处理负荷,简化了软件并保证了数据的一致性。应用程序只能通过读取 FIFO 输出邮箱,来读取 FIFO 中最先收到的报文。这里的有效报文是指那些正确被接收的(直到 EOF 都没有错误)且通过了标识符过滤的报文。前面我们知道 CAN 的接收有 2 个 FIFO,我们每个 过滤器组都可以设置其关联的 FIFO,通过 CAN_FFA1R 的设置,可以将过滤器组关联到 FIFO0/FIFO1。

CAN 接收流程为:FIFO 空→收到有效报文→挂号_1(存入 FIFO 的一个邮箱,这个由硬件 控制,我们不需要理会)→收到有效报文→挂号_2→收到有效报文→挂号_3→收到有效报文溢 出。

这个流程里面,我们没有考虑从 FIFO 读出报文的情况,实际情况是:我们必须在 FIFO 溢 出之前,读出至少 1 个报文,否则下个报文到来,将导致 FIFO 溢出,从而出现报文丢失。每读 出 1 个报文,相应的挂号就减 1,直到 FIFO 空。CAN 接收流程如图 37.2.1.13 所示:FIFO 接收到的报文数,我们可以通过查询 CAN_RFxR 的 FMP 寄存器来得到,只要 FMP 不为 0,我们就可以从 FIFO 读出收到的报文。

STM32 的 CAN 位时序特性

接下来,我们简单看看 STM32 的 CAN 位时间特性,STM32 的 CAN 位时间特性和之前我 们介绍的 CAN 协议中,稍有点区别。STM32 把传播时间段和相位缓冲段 1(STM32 称之为时 间段 1)合并了,所以 STM32 的 CAN 一个位只有 3 段:同步段(SYNC_SEG)、时间段 1(BS1) 和时间段 2(BS2)。STM32 的 BS1 段可以设置为 1~16 个时间单元,刚好等于我们上面介绍的 传播时间段和相位缓冲段 1 之和。STM32 的 CAN 位时序如图 37.2.1.14 所示:

图中还给出了 CAN 波特率的计算公式,我们只需要知道 BS1 和 BS2 的设置,以及 APB1 的时钟频率(一般为 36Mhz),就可以方便的计算出波特率。比如设置 TS1=8、TS2=7 和 BRP=3, 在 APB1 频率为 36Mhz 的条件下,即可得到 CAN 通信的波特率=36000/[(9+8+1)*4]=500Kbps。

相关文章:

CAN基础知识

CAN 简介 CAN 是 Controller Area Network 的缩写(以下称为 CAN),是 ISO 国际标准化的串行通信 协议。在当前的汽车产业中,出于对安全性、舒适性、方便性、低公害、低成本的要求,各种 各样的电子控制系统被开发了出来…...

vue3跨域怎么解决?

其实很简单 假设一个接口; http://101.42.170.68:10000/open/mockData/test1 首先,看自己项目中有没有vue.config.js文件,如果没有自己创建一个,如果有那吗在其中写。 vue.config.js: //固定格式,修改一部分就行了 const { def…...

强化学习小笔记 —— 如何选择合适的更新步长

在强化学习中,动作价值函数的更新可以使用增量法,如下所示: Q k 1 k ∑ i 1 k r i 1 k ( r k ∑ i 1 k − 1 r i ) 1 k ( r k ( k − 1 ) Q k − 1 ) 1 k ( r k k Q k − 1 − Q k − 1 ) Q k − 1 1 k [ r k − Q k − 1 ] \beg…...

容斥 C. Strange Function改编题

补题: 题目详情 - 9.段坤爱取模%%% - SUSTOJ 本题或许是参考 Problem - C - Codeforces 根据题意,f(i)就是不能被整除的最小的一个质因子。 打表发现,当15个质因子相乘后,长度就大于18。 因此可以知道小于等于1e16内的正整数x…...

C++笔记

文章目录 类模板类函数什么是友元函数?什么是内联函数?VECTOR哈希表栈队列映射与解除映射mmap()munmap可变参数 va_start()-va_send()vsnprintf()C/C++异常处理list红黑树类 基类、父类、顶层类、抽象类 子类、派生类 模板类 在C++中,模板类(Template Class)是一种通用…...

python-opencv 培训课程笔记(1)

python-opencv 培训课程笔记(1) 博主参加了一次opencv库的培训课程,把课程所学整理成笔记,供大家学习,第一次课程包括如下内容: 1.读取图像 2.保存图像 3.使用opencv库显示图像 4.读取图像为灰度图像 …...

【C++初阶】STL详解(七)Stack与Queue的模拟实现

本专栏内容为:C学习专栏,分为初阶和进阶两部分。 通过本专栏的深入学习,你可以了解并掌握C。 💓博主csdn个人主页:小小unicorn ⏩专栏分类:C 🚚代码仓库:小小unicorn的代码仓库&…...

校园报修抢修小程序系统开发 物业小区报修预约上门维修工单系统

开发的功能模块有: 1.报修工单提交:学生、教职员工等可以使用小程序提交报修请求。这通常包括选择报修的问题类型(如水漏、电器故障、照明问题等),地点,报修联系人,联系电话等,并提供…...

【Android】Hilt比Android好在哪里

Hilt框架的功能和设计理念,和Dagger基本是完全一致的,Hilt也是完全在Dagger基础上进行开发的 但是Dagger的用法比较繁琐,Hilt主要是做了便用性上的改进,主要有以下点 提供常用Component,不用再为每个InjectTarget都创…...

计算方法 期末总结

思维导图 绪论 算法的性质: 有穷性、确切性、有输入输出、可行性 算法的描述方法: 自然语言、伪代码、流程图、N-S流程图 算法设计思想: 化大为小的缩减技术:二分法化难为易的校正技术:开方法化粗为精的松弛技术&a…...

【面试】jvm中堆是分配对象存储的唯一选择吗

目录 一、说明二、逃逸分析2.1 说明2.2 参数设置 一、说明 1.在《深入理解Java虚拟机》中关于Java堆内存有这样一段描述:随着JIT编译期的发展与逃逸分析技术逐渐成熟,栈上分配、标量替换优化技术将会导致一些微妙的变化,所有的对象都分配到堆上也渐渐变得…...

音视频同步笔记 - 以音频时间为基

音视频同步 - 以音频时间为基 上图介绍: 该图是以音频的时间为基,对视频播放时间的延迟控制方案,只调整视频的播放延时。delayTime是视频播放的延迟时间,初始值是1 / FPS * 1000 (ms),如果FPS为25帧率,初始…...

JavaScript 原始数据类型和对应的对象类型(内置对象)之间的关系

JavaScript 原始数据类型和对应的对象类型(内置对象)之间的关系 JavaScript 的原始(primitive)数据类型包括包括数字(Number)、字符串(String)、布尔值(Boolean&#xf…...

报错For debugging consider passing CUDA_LAUNCH_BLOCKING=1.

.报错For debugging consider passing CUDA_LAUNCH_BLOCKING1. /aten/src/ATen/native/cuda/NLLLoss2d.cu:103: nll_loss2d_forward_kernel: block: [29,0,0], thread: [707,0,0] Assertion t > 0 && t < n_classes failed. 报错信息如下&#xff1a; ./aten/…...

whisper使用方法

看这个 github https://github.com/Purfview/whisper-standalone-win/tags下载 视频提取音频 ffmpeg -i 222.mp4 -vn -b:a 128k -c:a mp3 output.mp3截取4秒后的音频 ffmpeg -i output.mp3 -ss 4 -c copy output2.mp3使用 whisper-faster.exe 生成字幕 whisper-faster.exe …...

通过easyexcel实现数据导入功能

上一篇文章通过easyexcel导出数据到excel表格已经实现了简单的数据导出功能&#xff0c;这篇文章也介绍一下怎么通过easyexcel从excel表格中导入数据。 目录 一、前端代码 index.html index.js 二、后端代码 controller service SongServiceImpl 三、功能预览 四、后端…...

Springboot_文件下载功能(前端后端)

遇到的问题&#xff1a; 文件下载后文件一直被破坏&#xff0c;无法正常打开文件名乱码&#xff0c;如图 刚开始一直在纠结&#xff0c;是不是后端没有写对&#xff0c;然后导致下载不能使用 后来搜索了一些资料&#xff0c;发现后端没什么问题 然后就开始找到其他项目对比…...

Vue框架学习笔记——v-bind数据单向绑定和v-model数据双向绑定

文章目录 v-bind&#xff0c;数据单向绑定简写形态&#xff08;省略v-bind&#xff0c;只留冒号&#xff09;示例一&#xff08;将输入框数据改为&#xff1a;哈哈哈哈哈&#xff09;&#xff1a;实例二&#xff08;将Vue实例中的name改为字符串&#xff1a;"单向绑定&quo…...

将对象转成URL参数

背景 有的时候前端跳转到其他平台的页面需要携带额外的参数&#xff0c;需要将对象转成用 & 连接的字符串拼接在路径后面。 实现方法...

【论文阅读】MAG:一种用于航天器遥测数据中有效异常检测的新方法

文章目录 摘要1 引言2 问题描述3 拟议框架4 所提出方法的细节A.数据预处理B.变量相关分析C.MAG模型D.异常分数 5 实验A.数据集和性能指标B.实验设置与平台C.结果和比较 6 结论 摘要 异常检测是保证航天器稳定性的关键。在航天器运行过程中&#xff0c;传感器和控制器产生大量周…...

深入剖析AI大模型:大模型时代的 Prompt 工程全解析

今天聊的内容&#xff0c;我认为是AI开发里面非常重要的内容。它在AI开发里无处不在&#xff0c;当你对 AI 助手说 "用李白的风格写一首关于人工智能的诗"&#xff0c;或者让翻译模型 "将这段合同翻译成商务日语" 时&#xff0c;输入的这句话就是 Prompt。…...

调用支付宝接口响应40004 SYSTEM_ERROR问题排查

在对接支付宝API的时候&#xff0c;遇到了一些问题&#xff0c;记录一下排查过程。 Body:{"datadigital_fincloud_generalsaas_face_certify_initialize_response":{"msg":"Business Failed","code":"40004","sub_msg…...

Lombok 的 @Data 注解失效,未生成 getter/setter 方法引发的HTTP 406 错误

HTTP 状态码 406 (Not Acceptable) 和 500 (Internal Server Error) 是两类完全不同的错误&#xff0c;它们的含义、原因和解决方法都有显著区别。以下是详细对比&#xff1a; 1. HTTP 406 (Not Acceptable) 含义&#xff1a; 客户端请求的内容类型与服务器支持的内容类型不匹…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档&#xff1a;Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后&#xff0c;会在本地和远程创建数据库&#xff1a; npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库&#xff1a; 现在&#xff0c;您的Cloudfla…...

【HarmonyOS 5.0】DevEco Testing:鸿蒙应用质量保障的终极武器

——全方位测试解决方案与代码实战 一、工具定位与核心能力 DevEco Testing是HarmonyOS官方推出的​​一体化测试平台​​&#xff0c;覆盖应用全生命周期测试需求&#xff0c;主要提供五大核心能力&#xff1a; ​​测试类型​​​​检测目标​​​​关键指标​​功能体验基…...

Swift 协议扩展精进之路:解决 CoreData 托管实体子类的类型不匹配问题(下)

概述 在 Swift 开发语言中&#xff0c;各位秃头小码农们可以充分利用语法本身所带来的便利去劈荆斩棘。我们还可以恣意利用泛型、协议关联类型和协议扩展来进一步简化和优化我们复杂的代码需求。 不过&#xff0c;在涉及到多个子类派生于基类进行多态模拟的场景下&#xff0c;…...

聊聊 Pulsar:Producer 源码解析

一、前言 Apache Pulsar 是一个企业级的开源分布式消息传递平台&#xff0c;以其高性能、可扩展性和存储计算分离架构在消息队列和流处理领域独树一帜。在 Pulsar 的核心架构中&#xff0c;Producer&#xff08;生产者&#xff09; 是连接客户端应用与消息队列的第一步。生产者…...

srs linux

下载编译运行 git clone https:///ossrs/srs.git ./configure --h265on make 编译完成后即可启动SRS # 启动 ./objs/srs -c conf/srs.conf # 查看日志 tail -n 30 -f ./objs/srs.log 开放端口 默认RTMP接收推流端口是1935&#xff0c;SRS管理页面端口是8080&#xff0c;可…...

04-初识css

一、css样式引入 1.1.内部样式 <div style"width: 100px;"></div>1.2.外部样式 1.2.1.外部样式1 <style>.aa {width: 100px;} </style> <div class"aa"></div>1.2.2.外部样式2 <!-- rel内表面引入的是style样…...

WordPress插件:AI多语言写作与智能配图、免费AI模型、SEO文章生成

厌倦手动写WordPress文章&#xff1f;AI自动生成&#xff0c;效率提升10倍&#xff01; 支持多语言、自动配图、定时发布&#xff0c;让内容创作更轻松&#xff01; AI内容生成 → 不想每天写文章&#xff1f;AI一键生成高质量内容&#xff01;多语言支持 → 跨境电商必备&am…...