当前位置: 首页 > news >正文

2023亚太杯数学建模A题思路代码分析

已经完成A题完整思路代码,文末名片查看获取

A题就是我们机器学习中的一个图像识别,他是水果图像识别,就是苹果识别的一个问题,我们用到的方法基本是使用深度学习中的卷积神经网络来进行识别和分类

问题一:基于附件1中提供的可收获苹果的图像数据集,提取图像特征,建立数学模型,计算每幅图像中的苹果的数量,并绘制附件1中所有苹果的分布直方图。

我们看问题一,要求计算每张图像中苹果的数量。解决这个问题的关键在于准确地识别图像中每一个苹果,并区分它们。可以看到,附件1给出的图片它的背景都是不一样的,我们要区分苹果和它自身环境的背景,要去增强图片的一个对比度,让他们能够更好的区分开来,可以使用使用OpenCV结合一些高级的图像分割算法,例如基于深度学习的分割方法或更复杂的传统图像处理技术。

import cv2
import numpy as np
import globdef preprocess_image(image):# 转换到HSV颜色空间hsv = cv2.cvtColor(image, cv2.COLOR_BGR2HSV)# 定义苹果颜色的范围lower_red1 = np.array([0, 100, 100])upper_red1 = np.array([10, 255, 255])lower_red2 = np.array([160, 100, 100])upper_red2 = np.array([180, 255, 255])# 根据颜色阈值创建掩码mask1 = cv2.inRange(hsv, lower_red1, upper_red1)mask2 = cv2.inRange(hsv, lower_red2, upper_red2)mask = cv2.bitwise_or(mask1, mask2)# 形态学操作改善掩码kernel = np.ones((5, 5), np.uint8)mask = cv2.erode(mask, kernel, iterations=2)mask = cv2.dilate(mask, kernel, iterations=2)return maskdef count_apples(image_path):image = cv2.imread(image_path)processed_image = preprocess_image(image)# 寻找轮廓contours, _ = cv2.findContours(processed_image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)# 计算苹果数量return len(contours)# 读取图像
image_paths = glob.glob('你本地的图像文件夹路径')  # 修改为你的图像文件夹路径
total_apples = 0for path in image_paths:total_apples += count_apples(path)print(f"总苹果数量: {total_apples}")

问题二:根据附件1中提供的可收获苹果的图像数据集,以图像的左下角为坐标原点,确定每个图像中苹果的位置,并绘制附件1中所有苹果的几何坐标的二维散点图。

问题二要我们去评估苹果的一个位置,这个问题核心在于准确地定位图像中的苹果。最合适的方法是使用深度学习中的目标检测算法。会用到的就是卷积神经网络CNN,里面会用到包括YOLO和Faster R-CNN。这些算法能够在图像中同时识别出多个苹果并给出它们的位置。为了训练这样的模型,我们需要一个带有标注信息的数据集,即每个苹果在图像中的确切位置和尺寸。可以用“边界框”来表示,边界框是围绕苹果的矩形框,用两个坐标(左上角和右下角)来描述。这个就像在地图上标记重要地点一样一旦我们有了这些带标记的数据,就可以开始训练我们的模型了

在训练模型之前,对图像进行预处理是关键。这包括调整图像大小以适应模型输入、可能的归一化步骤(使像素值在0到1之间),以及其他图像增强技术,去增强对比度和颜色平衡。

问题三:基于附件1中提供的可收获苹果的图像数据集,建立数学模型,计算每幅图像中苹果的成熟度,并绘制附件1中所有苹果成熟度分布的直方图。

估计苹果成熟度的问题可以看作是一个复合问题,它涉及到图像处理和模式识别的多个方面。我们首先需要识别出影响成熟度的关键图像特征。这些包括苹果的颜色、纹理、大小和形状。颜色是一个直观的特征,因为成熟度往往与苹果的颜色变化密切相关。纹理分析可以揭示成熟苹果表面的微妙变化,而大小和形状可能也与成熟度有关。我们可以使用一些高级的图像处理技术,比如局部二值模式(LBP),来提取苹果表面的细微纹理特征。他们能够捕捉到成熟度变化过程中苹果表面纹理的微妙变化。成熟度判定,我们依旧是采用卷积神经网络来自动提取和学习影响成熟度的特征。

问题四:根据附件1中提供的收获苹果的图像数据集,计算每个图像左下角的苹果的二维面积为3坐标原点,估算苹果的质量,并绘制附件1中所有苹果的质量分布的直方图。

这个问题有点复杂,需要我们去估计苹果质量的,它会涉及到将二维图像信息转换为对三维物体质量的估计。我们首先需要从图像中估计苹果的真实大小。这会涉及到立体视觉技术,我们要根据附件中提供的多角度的图像,来利用这些图像重建苹果的三维模型,去准确地估计它的尺寸。

更多思路代码↓

相关文章:

2023亚太杯数学建模A题思路代码分析

已经完成A题完整思路代码,文末名片查看获取 A题就是我们机器学习中的一个图像识别,他是水果图像识别,就是苹果识别的一个问题,我们用到的方法基本是使用深度学习中的卷积神经网络来进行识别和分类 问题一:基于附件1中…...

Qt实现自定义IP地址输入控件(百分百还原Windows 10网络地址输入框)

在开发网络相关的程序时,我们经常需要输入IP地址,例如源地址和目标地址。Qt提供了一些基础的控件,如QLineEdit,但是它们并不能满足我们对IP地址输入的要求,例如限制输入的格式、自动跳转到下一个输入框、处理回车和退格键等。因此,我们需要自己编写一个自定义的IP地址输入…...

Linux下的C++ socket编程实例

服务端: 服务器端先初始化socket,然后与端口绑定,对端口进行监听,调用accept阻塞,等待客户端连接。 socket() -> bind() -> listen() -> accept() 客户端: 客户端先初始化socket,然后…...

4.常见面试题--操作系统

特点:并发性、共享性、虚拟性、异步性。 Windows 和 Linux 内核差异 对于内核的架构⼀般有这三种类型: ● 宏内核,包含多个模块,整个内核像⼀个完整的程序; ● 微内核,有⼀个最⼩版本的内核&#xff0…...

YOLOv8训练自己的目标检测数据集

YOLOv8训练自己的目标检测数据集 目录标题 源码下载环境配置安装包训练自己的数据集数据集文件格式数据集文件配置超参数文件配置训练数据集命令行训练脚本.py文件训练 进行detect显示detect的效果 源码下载 YOLOv8官方的GitHub代码,同时上面也有基础环境的配置要…...

代码随想录算法训练营第三十二天| 122 买卖股票的最佳时机 || 55 跳跃游戏 45 跳跃游戏 ||

目录 122 买卖股票的最佳时机 || 55 跳跃游戏 45 跳跃游戏 || 122 买卖股票的最佳时机 || 设置变量now代表此时买入的股票,为赋值为Integer.MAX_VALUE,遍历prices数组,有如下两种情况: 如果比now小说明不能售出,可以…...

聚类笔记/sklearn笔记:Affinity Propagation亲和力传播

1 算法原理 1.1 基本思想 将全部数据点都当作潜在的聚类中心(称之为 exemplar )然后数据点两两之间连线构成一个网络( 相似度矩阵 )再通过网络中各条边的消息( responsibility 和 availability )传递计算出各样本的聚类中心。 1.2 主要概念 Examplar聚类中心similarity S(i…...

Linux常用操作 Vim一般使用 SSH介绍 SSH密钥登录

目录 1. 常用命令 2. vim一般使用 3. SSH介绍 4. ssh密钥登录 1. 常用命令 1)# 与 $ 提示的区别 # 表示用户有root权限,一般的以root用户登录提示符为#, $提示符表示用户为普通用户 2)ifconfig 查看ip地址 eno1: 代表由主板…...

Hadoop技术与应用的习题

第一章测验 1、下面哪个选项不属于Google的三驾马车? A.HDFS B.MapReduce C.BigTable D.GFS 2、下面哪个思想是为了解决PageRank(网页排名)的问题? A.GFS B.BigTable C.MapReduce D.YARN 3、GFS 存储的文件都被分割成固定大小的…...

4.4 抗锯齿

一、锯齿是怎么产生的 二、抗锯齿介绍 1.SSAA(super sample anti-aliasing) 拿4xSSAA举例子,假设最终屏幕输出的分辨率是800x600, 4xSSAA就会先渲染到一个分辨率1600x1200的buffer上,然后再直接把这个放大4倍的buffer下采样至800x600。这种做法在数学上…...

vue-router 路由权限,路由导航守卫

addRouter() 添加路由 使用场景 列如:菜单权限的分配(管理员与用户不一致) 根据后台返回 参数 定义isAdmin根据isAdmin 分配 let isAdmin true // 添加路由 可以传参 一级路由名称 来添加二级路由 if (isAdmin) {router.addRoute({path: /…...

2022最新版-李宏毅机器学习深度学习课程-P49 GPT的野望

GPT→类似于Transformer Encoder 训练任务:Predict Next Token 使用MASK-attention,不断预测“下一个token”。 可以用GPT生成文章。 How to use GPT? 给出描述和例子 给出前半段,补上后半段 In-context Learning(no GD) 结果 目前看起…...

应用软件安全编程--28SSL 连接时要进行服务器身份验证

当进行SSL 连接时,服务器身份验证处于禁用状态。在某些使用SSL 连接的库中,默认情况下不 验证服务器证书。这相当于信任所有证书。 对 SSL 连接时要进行服务器身份验证的情况,示例1给出了不规范用法(Java 语言)示例。示例2 给出了规范用法(J…...

深度学习之七(深度信念网络和受限玻尔兹曼机器)

概念 深度信念网络(Deep Belief Networks,DBN)和受限玻尔兹曼机器(Restricted Boltzmann Machines,RBMs)都是无监督学习的模型,通常用于特征学习、降维和生成数据。 受限玻尔兹曼机器(RBM): 结构: RBM 是一个两层神经网络,包括一个可见层和一个隐藏层。这两层之间…...

CTF-PWN-QEMU-前置知识

文章目录 QEMU 内存管理(QEMU 如何管理某个特定 VM 的内存)MemoryRegion gpa->hpaFlatView:表示MR 树对应的地址空间FlatRange:存储不同MR对应的地址信息AddressSpace:不同类型的 MemoryRegion树RAMBlock总体简化图 QEMU 设备模拟 &#x…...

iEnglish全国ETP大赛:教育游戏助力英语习得

“seesaw,abacus,sword,feather,frog,lion,mouse……”11月18日,经过3局的激烈较量,“以过客之名队”的胡玲、黄长翔、林家慷率先晋级“玩转英语,用iEnglish”第三届全国ETP大赛的16强,在过去的周末中,还有TIK徘徊者队、不负昭华队、温柔杀戮者队先后晋级。据悉,根据活动规则,在…...

租车系统开发/多功能租车平台微信小程序源码/汽车租赁系统源码/汽车租赁小程序系统

源码介绍: 多功能租车平台微信小程序源码,作为汽车租赁、摩托车租车平台系统源码,是小程序系统。基于微信小程序的汽车租赁系统源码。 开发环境及工具: 大等于jdk1.8,大于mysql5.5,idea(eclip…...

Nevron Vision for .NET 2023.1 Crack

Nevron Vision for .NET 适用于桌面和 Web 应用程序的高级数据可视化 Nevron Vision for .NET提供最全面的组件,用于构建面向 Web 和桌面的企业级数据可视化应用程序。 该套件中的组件具有连贯的 2D 和 3D 数据可视化效果,对观众产生巨大的视觉冲击力。我…...

基于Python的新浪微博爬虫程序设计与实现

完整下载:基于Python的新浪微博爬虫程序设计与实现.docx 基于Python的新浪微博爬虫程序设计与实现 Design and Implementation of a Python-based Weibo Web Crawler Program 目录 目录 2 摘要 3 关键词 4 第一章 引言 4 1.1 研究背景 4 1.2 研究目的 5 1.3 研究意义…...

Java架构师发展方向和历程

目录 1 导论2 架构师的三观培养3 架构师的遇到的困难4 架构师职责5 架构师之路6 架构师的发展方向7 应用领域架构师8 业务架构师9 系统架构师和企业架构师10 技术路线和演进规划11 一线大厂的技术生态拓张案例12 如何推进项目落地想学习架构师构建流程请跳转:Java架构师系统架…...

在软件开发中正确使用MySQL日期时间类型的深度解析

在日常软件开发场景中,时间信息的存储是底层且核心的需求。从金融交易的精确记账时间、用户操作的行为日志,到供应链系统的物流节点时间戳,时间数据的准确性直接决定业务逻辑的可靠性。MySQL作为主流关系型数据库,其日期时间类型的…...

vscode里如何用git

打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

云原生核心技术 (7/12): K8s 核心概念白话解读(上):Pod 和 Deployment 究竟是什么?

大家好,欢迎来到《云原生核心技术》系列的第七篇! 在上一篇,我们成功地使用 Minikube 或 kind 在自己的电脑上搭建起了一个迷你但功能完备的 Kubernetes 集群。现在,我们就像一个拥有了一块崭新数字土地的农场主,是时…...

反向工程与模型迁移:打造未来商品详情API的可持续创新体系

在电商行业蓬勃发展的当下,商品详情API作为连接电商平台与开发者、商家及用户的关键纽带,其重要性日益凸显。传统商品详情API主要聚焦于商品基本信息(如名称、价格、库存等)的获取与展示,已难以满足市场对个性化、智能…...

FastAPI 教程:从入门到实践

FastAPI 是一个现代、快速(高性能)的 Web 框架,用于构建 API,支持 Python 3.6。它基于标准 Python 类型提示,易于学习且功能强大。以下是一个完整的 FastAPI 入门教程,涵盖从环境搭建到创建并运行一个简单的…...

转转集团旗下首家二手多品类循环仓店“超级转转”开业

6月9日,国内领先的循环经济企业转转集团旗下首家二手多品类循环仓店“超级转转”正式开业。 转转集团创始人兼CEO黄炜、转转循环时尚发起人朱珠、转转集团COO兼红布林CEO胡伟琨、王府井集团副总裁祝捷等出席了开业剪彩仪式。 据「TMT星球」了解,“超级…...

《通信之道——从微积分到 5G》读书总结

第1章 绪 论 1.1 这是一本什么样的书 通信技术,说到底就是数学。 那些最基础、最本质的部分。 1.2 什么是通信 通信 发送方 接收方 承载信息的信号 解调出其中承载的信息 信息在发送方那里被加工成信号(调制) 把信息从信号中抽取出来&am…...

Spring Boot面试题精选汇总

🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...

Ascend NPU上适配Step-Audio模型

1 概述 1.1 简述 Step-Audio 是业界首个集语音理解与生成控制一体化的产品级开源实时语音对话系统,支持多语言对话(如 中文,英文,日语),语音情感(如 开心,悲伤)&#x…...

DeepSeek 技术赋能无人农场协同作业:用 AI 重构农田管理 “神经网”

目录 一、引言二、DeepSeek 技术大揭秘2.1 核心架构解析2.2 关键技术剖析 三、智能农业无人农场协同作业现状3.1 发展现状概述3.2 协同作业模式介绍 四、DeepSeek 的 “农场奇妙游”4.1 数据处理与分析4.2 作物生长监测与预测4.3 病虫害防治4.4 农机协同作业调度 五、实际案例大…...