【深度学习】卷积神经网络(CNN)
一、引子————边界检测
我们来看一个最简单的例子:“边界检测(edge detection)”,假设我们有这样的一张图片,大小8×8:
图片中的数字代表该位置的像素值,我们知道,像素值越大,颜色越亮,所以为了示意,我们把右边小像素的地方画成深色。图的中间两个颜色的分界线就是我们要检测的边界。
怎么检测这个边界呢?我们可以设计这样的一个 滤波器(filter,也称为kernel),大小3×3:
然后,我们用这个filter,往我们的图片上“盖”,覆盖一块跟filter一样大的区域之后,对应元素相乘,然后求和。计算一个区域之后,就向其他区域挪动,接着计算,直到把原图片的每一个角落都覆盖到了为止。这个过程就是 “卷积”。 (我们不用管卷积在数学上到底是指什么运算,我们只用知道在CNN中是怎么计算的。) 这里的“挪动”,就涉及到一个步长了,假如我们的步长是1,那么覆盖了一个地方之后,就挪一格,容易知道,总共可以覆盖6×6个不同的区域。
那么,我们将这6×6个区域的卷积结果,拼成一个矩阵:
诶?!发现了什么? 这个图片,中间颜色浅,两边颜色深,这说明咱们的原图片中间的边界,在这里被反映出来了!
从上面这个例子中,我们发现,我们可以通过设计特定的filter,让它去跟图片做卷积,就可以识别出图片中的某些特征,比如边界。 上面的例子是检测竖直边界,我们也可以设计出检测水平边界的,只用把刚刚的filter旋转90°即可。对于其他的特征,理论上只要我们经过精细的设计,总是可以设计出合适的filter的。
我们的CNN(convolutional neural network),主要就是通过一个个的filter,不断地提取特征,从局部的特征到总体的特征,从而进行图像识别等等功能。
那么问题来了,我们怎么可能去设计这么多各种各样的filter呀?首先,我们都不一定清楚对于一大推图片,我们需要识别哪些特征,其次,就算知道了有哪些特征,想真的去设计出对应的filter,恐怕也并非易事,要知道,特征的数量可能是成千上万的。
其实学过神经网络之后,我们就知道,这些filter,根本就不用我们去设计,每个filter中的各个数字,不就是参数吗,我们可以通过大量的数据,来 让机器自己去“学习”这些参数嘛。这,就是CNN的原理。
二、CNN的基本概念
1.padding 填白
从上面的引子中,我们可以知道,原图像在经过filter卷积之后,变小了,从(8,8)变成了(6,6)。假设我们再卷一次,那大小就变成了(4,4)了。
这样有啥问题呢? 主要有两个问题: - 每次卷积,图像都缩小,这样卷不了几次就没了; - 相比于图片中间的点,图片边缘的点在卷积中被计算的次数很少。这样的话,边缘的信息就易于丢失。
为了解决这个问题,我们可以采用padding的方法。我们每次卷积前,先给图片周围都补一圈空白,让卷积之后图片跟原来一样大,同时,原来的边缘也被计算了更多次。
比如,我们把(8,8)的图片给补成(10,10),那么经过(3,3)的filter之后,就是(8,8),没有变。
我们把上面这种“让卷积之后的大小不变”的padding方式,称为 “Same”方式, 把不经过任何填白的,称为 “Valid”方式。这个是我们在使用一些框架的时候,需要设置的超参数。
2.stride 步长
前面我们所介绍的卷积,都是默认步长是1,但实际上,我们可以设置步长为其他的值。 比如,对于(8,8)的输入,我们用(3,3)的filter, 如果stride=1,则输出为(6,6); 如果stride=2,则输出为(3,3);(这里例子举得不大好,除不断就向下取整)
3.pooling 池化
这个pooling,是为了提取一定区域的主要特征,并减少参数数量,防止模型过拟合。 比如下面的MaxPooling,采用了一个2×2的窗口,并取stride=2:
除了MaxPooling,还有AveragePooling,顾名思义就是取那个区域的平均值。
4.对多通道(channels)图片的卷积
这个需要单独提一下。彩色图像,一般都是RGB三个通道(channel)的,因此输入数据的维度一般有三个:(长,宽,通道)。 比如一个28×28的RGB图片,维度就是(28,28,3)。
前面的引子中,输入图片是2维的(8,8),filter是(3,3),输出也是2维的(6,6)。
如果输入图片是三维的呢(即增多了一个channels),比如是(8,8,3),这个时候,我们的filter的维度就要变成(3,3,3)了,它的 最后一维要跟输入的channel维度一致。 这个时候的卷积,是三个channel的所有元素对应相乘后求和,也就是之前是9个乘积的和,现在是27个乘积的和。因此,输出的维度并不会变化。还是(6,6)。
但是,一般情况下,我们会 使用多了filters同时卷积,比如,如果我们同时使用4个filter的话,那么 输出的维度则会变为(6,6,4)。
我特地画了下面这个图,来展示上面的过程:
图中的输入图像是(8,8,3),filter有4个,大小均为(3,3,3),得到的输出为(6,6,4)。 我觉得这个图已经画的很清晰了,而且给出了3和4这个两个关键数字是怎么来的,所以我就不啰嗦了(这个图画了我起码40分钟)。
其实,如果套用我们前面学过的神经网络的符号来看待CNN的话,
- 我们的输入图片就是X,shape=(8,8,3);
- 4个filters其实就是第一层神金网络的参数W1,,shape=(3,3,3,4),这个4是指有4个filters;
- 我们的输出,就是Z1,shape=(6,6,4);
- 后面其实还应该有一个激活函数,比如relu,经过激活后,Z1变为A1,shape=(6,6,4);
所以,在前面的图中,我加一个激活函数,给对应的部分标上符号,就是这样的:
三、CNN的结构组成
上面我们已经知道了卷积(convolution)、池化(pooling)以及填白(padding)是怎么进行的,接下来我们就来看看CNN的整体结构,它包含了3种层(layer):
1. Convolutional layer(卷积层–CONV)
由滤波器filters和激活函数构成。 一般要设置的超参数包括filters的数量、大小、步长,以及padding是“valid”还是“same”。当然,还包括选择什么激活函数。
2. Pooling layer (池化层–POOL)
这里里面没有参数需要我们学习,因为这里里面的参数都是我们设置好了,要么是Maxpooling,要么是Averagepooling。 需要指定的超参数,包括是Max还是average,窗口大小以及步长。 通常,我们使用的比较多的是Maxpooling,而且一般取大小为(2,2)步长为2的filter,这样,经过pooling之后,输入的长宽都会缩小2倍,channels不变。
3. Fully Connected layer(全连接层–FC)
这个前面没有讲,是因为这个就是我们最熟悉的家伙,就是我们之前学的神经网络中的那种最普通的层,就是一排神经元。因为这一层是每一个单元都和前一层的每一个单元相连接,所以称之为“全连接”。 这里要指定的超参数,无非就是神经元的数量,以及激活函数。
接下来,我们随便看一个CNN的模样,来获取对CNN的一些感性认识:
上面这个CNN是我随便拍脑门想的一个。它的结构可以用: X–>CONV(relu)–>MAXPOOL–>CONV(relu)–>FC(relu)–>FC(softmax)–>Y 来表示。
这里需要说明的是,在经过数次卷积和池化之后,我们 最后会先将多维的数据进行“扁平化”,也就是把 (height,width,channel)的数据压缩成长度为 height × width × channel 的一维数组,然后再与 FC层连接,这之后就跟普通的神经网络无异了。
可以从图中看到,随着网络的深入,我们的图像(严格来说中间的那些不能叫图像了,但是为了方便,还是这样说吧)越来越小,但是channels却越来越大了。在图中的表示就是长方体面对我们的面积越来越小,但是长度却越来越长了。
四、卷积神经网络 VS. 传统神经网络
其实现在回过头来看,CNN跟我们之前学习的神经网络,也没有很大的差别。 传统的神经网络,其实就是多个FC层叠加起来。 CNN,无非就是把FC改成了CONV和POOL,就是把传统的由一个个神经元组成的layer,变成了由filters组成的layer。
那么,为什么要这样变?有什么好处? 具体说来有两点:
1.参数共享机制(parameters sharing)
我们对比一下传统神经网络的层和由filters构成的CONV层: 假设我们的图像是8×8大小,也就是64个像素,假设我们用一个有9个单元的全连接层:
那这一层我们需要多少个参数呢?需要 64×9 = 576个参数(先不考虑偏置项b)。因为每一个链接都需要一个权重w。
那我们看看 同样有9个单元的filter是怎么样的:
其实不用看就知道,有几个单元就几个参数,所以总共就9个参数!
因为,对于不同的区域,我们都共享同一个filter,因此就共享这同一组参数。 这也是有道理的,通过前面的讲解我们知道,filter是用来检测特征的,那一个特征一般情况下很可能在不止一个地方出现,比如“竖直边界”,就可能在一幅图中多出出现,那么 我们共享同一个filter不仅是合理的,而且是应该这么做的。
由此可见,参数共享机制,让我们的网络的参数数量大大地减少。这样,我们可以用较少的参数,训练出更加好的模型,典型的事半功倍,而且可以有效地 避免过拟合。 同样,由于filter的参数共享,即使图片进行了一定的平移操作,我们照样可以识别出特征,这叫做 “平移不变性”。因此,模型就更加稳健了。
2.连接的稀疏性(sparsity of connections)
由卷积的操作可知,输出图像中的任何一个单元,只跟输入图像的一部分有关系:
而传统神经网络中,由于都是全连接,所以输出的任何一个单元,都要受输入的所有的单元的影响。这样无形中会对图像的识别效果大打折扣。比较,每一个区域都有自己的专属特征,我们不希望它受到其他区域的影响。
正是由于上面这两大优势,使得CNN超越了传统的NN,开启了神经网络的新时代。
相关文章:
【深度学习】卷积神经网络(CNN)
一、引子————边界检测 我们来看一个最简单的例子:“边界检测(edge detection)”,假设我们有这样的一张图片,大小88: 图片中的数字代表该位置的像素值,我们知道,像素值越大&#…...
科普:多领域分布式协同仿真
分布式协同仿真是一种在分布式计算环境中进行协同工作的仿真方法。使用该方法进行协同仿真时,仿真任务将被分发到多个计算节点上,并且这些节点可以同时工作以模拟完整的系统行为。分布式协同仿真已被广泛应用于工程、科学和军事领域,以便更好…...
openstack(2)
目录 块存储服务 安装并配置控制节点 安装并配置一个存储节点 验证操作 封装镜像 上传镜像 块存储服务 安装并配置控制节点 创建数据库 [rootcontroller ~]# mysql -u root -pshg12345 MariaDB [(none)]> CREATE DATABASE cinder; MariaDB [(none)]> GRANT ALL PR…...
Jmeter 压测保姆级入门教程
1、Jmeter本地安装 1.1、下载安装 软件下载地址: https://mirrors.tuna.tsinghua.edu.cn/apache/jmeter/binaries/ 选择一个压缩包下载即可 然后解压缩后进入bin目录直接执行命令jmeter即可启动 1.2 修改语言 默认是英文的,修改中文,点击…...
springboot2.1升级到2.7 actuator丢失部分metrics端点
项目场景: 项目需要升级springboot从2.1升级至2.7 问题描述 发现之前的metrics后面的jvm相关的端口丢了 原因分析: 找到这样一篇博文https://blog.csdn.net/CL_YD/article/details/120309094,这篇博文意思是对的,但是写的不太好…...
梦开始的地方——Adobe Premiere Pro
今天,我们来说说一款老生常谈的相信也是很多人都经常迫切需要的软件。Adobe Premiere Pro,简称Pr,是由Adobe公司开发的一款视频编辑软件。 Premiere Pro是视频编辑爱好者和专业人士必不可少的视频编辑工具。它可以提升您的创作能力和创作自由…...
Nginx同时支持Http和Https的配置详解
当配置Nginx同时支持HTTP和HTTPS时,需要进行以下步骤: 安装和配置SSL证书: 获得SSL证书:从可信任的证书颁发机构(CA)或使用自签名证书创建SSL证书。 将证书和私钥保存到服务器:将SSL证书和私钥…...
3.2 Windows驱动开发:内核CR3切换读写内存
CR3是一种控制寄存器,它是CPU中的一个专用寄存器,用于存储当前进程的页目录表的物理地址。在x86体系结构中,虚拟地址的翻译过程需要借助页表来完成。页表是由页目录表和页表组成的,页目录表存储了页表的物理地址,而页表…...
基于springBoot+Vue的停车管理系统
开发环境 IDEA JDK1.8 MySQL8.0Node 系统简介 本项目为前后端分离项目,前端使用vue,后端使用SpringBoot开发,主要的功能有用户管理,停车场管理,充值收费,用户可以注册登录系统,自主充值和预…...
ES开启安全认证
elasticsearch开启安全认证步骤 1.创建证书 进入到es主目录下执行 ./bin/elasticsearch-certutil ca Elasticsearch开启安全认证详细步骤 第一个证书名称默认,直接回车 第二个输入密码,直接回车 完成后会生成一个文件:elastic-stack-ca.p12…...
CS5511规格书|CS5511方案应用说明|DP转双路LVDS/eDP芯片方案
概述:CS5511是一个将DP/eDP输入转换为LVDS信号的桥接芯片,此外,CS5511可以用作在DP/eDP输入到DP/eDP输出场景中桥接芯片。CS5511的高级接收器支持VEDA DisplayPort(DP)1.3和嵌入式DisplayPort(eDP…...
JAVA小游戏“飞翔的小鸟”
第一步是创建项目 项目名自拟 第二步创建个包名 来规范class 再创建一个包 来存储照片 如下: package game; import java.awt.*; import javax.swing.*; import javax.imageio.ImageIO;public class Bird {Image image;int x,y;int width,height;int size;doubl…...
1410. HTML 实体解析器 --力扣 --JAVA
题目 「HTML 实体解析器」 是一种特殊的解析器,它将 HTML 代码作为输入,并用字符本身替换掉所有这些特殊的字符实体。 HTML 里这些特殊字符和它们对应的字符实体包括: 双引号:字符实体为 " ,对应的字符是 &qu…...
【开源】基于Vue.js的海南旅游景点推荐系统的设计和实现
项目编号: S 023 ,文末获取源码。 \color{red}{项目编号:S023,文末获取源码。} 项目编号:S023,文末获取源码。 目录 一、摘要1.1 项目介绍1.2 项目录屏 二、功能模块2.1 用户端2.2 管理员端 三、系统展示四…...
机器学习【01】相关环境的安装
学习实例 参考资料:联邦学习实战{杨强}https://book.douban.com/subject/35436587/ 项目地址:https://github.com/FederatedAI/Practicing-Federated-Learning/tree/main/chapter03_Python_image_classification 一、环境准备 GPU安装CUDA、cuDNN pytho…...
微服务实战系列之签名Sign
前言 昨日恰逢“小雪”节气,今日寒风如约而至。清晨的马路上,除了洋洋洒洒的落叶,就是熙熙攘攘的上班族。眼看着,暖冬愈明显了,叶子来不及泛黄就告别了树。变化总是在不经意中发生,容不得半刻糊涂。 上集博…...
家用小型洗衣机哪款性价比高?口碑最好迷你洗衣机排行榜
由于我们的内衣、内裤和袜子等等贴身小件衣物的清洁频率比一般的衣物要高。而且,如果我们人工手洗的话,不仅会大大浪费了我们的时间,而且还不能进行对这些贴身的以为进行深层消毒和除菌。这种情况下,就得需要一台专门用于清洗内衣…...
企业远程访问业务系统:对比MPLS专线,贝锐蒲公英为何更优优势?
如今,企业大多都会采用OA、ERP、CRM等各种数字化业务系统。 私有云、公有云混合架构也变得越来越常见。 比如:研发系统部署在公司本地私有云、确保数据安全,OA采用公有云方案、满足随时随地访问需求。 如此一来,也产生了远程访问…...
Maven项目下详细的SSM整合流程
文章目录 🎉SSM整合流程一、两个容器整合✨ 1、先准备好数据库config.properties连接、mybatis-config.xml🎊 2、容器一:优先配置spring.xml文件🎊 3、容器二:配置springMVC.xml文件🎊 4、Tomcat整合spring…...
Linux 设置文件开启数量限制
1、限制某个用户的 vim /etc/security/limits.confroot soft nofile 65535 root hard nofile 65535 *soft nofile 65535 *hard nofile 65535第一行指root用户的每个进程可开启最大的文件数(软限制,只警告)第二行指root用户的每个进程可开启最…...
Linux 文件类型,目录与路径,文件与目录管理
文件类型 后面的字符表示文件类型标志 普通文件:-(纯文本文件,二进制文件,数据格式文件) 如文本文件、图片、程序文件等。 目录文件:d(directory) 用来存放其他文件或子目录。 设备…...
逻辑回归:给不确定性划界的分类大师
想象你是一名医生。面对患者的检查报告(肿瘤大小、血液指标),你需要做出一个**决定性判断**:恶性还是良性?这种“非黑即白”的抉择,正是**逻辑回归(Logistic Regression)** 的战场&a…...
使用van-uploader 的UI组件,结合vue2如何实现图片上传组件的封装
以下是基于 vant-ui(适配 Vue2 版本 )实现截图中照片上传预览、删除功能,并封装成可复用组件的完整代码,包含样式和逻辑实现,可直接在 Vue2 项目中使用: 1. 封装的图片上传组件 ImageUploader.vue <te…...
镜像里切换为普通用户
如果你登录远程虚拟机默认就是 root 用户,但你不希望用 root 权限运行 ns-3(这是对的,ns3 工具会拒绝 root),你可以按以下方法创建一个 非 root 用户账号 并切换到它运行 ns-3。 一次性解决方案:创建非 roo…...
【碎碎念】宝可梦 Mesh GO : 基于MESH网络的口袋妖怪 宝可梦GO游戏自组网系统
目录 游戏说明《宝可梦 Mesh GO》 —— 局域宝可梦探索Pokmon GO 类游戏核心理念应用场景Mesh 特性 宝可梦玩法融合设计游戏构想要素1. 地图探索(基于物理空间 广播范围)2. 野生宝可梦生成与广播3. 对战系统4. 道具与通信5. 延伸玩法 安全性设计 技术选…...
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析
Java求职者面试指南:Spring、Spring Boot、MyBatis框架与计算机基础问题解析 一、第一轮提问(基础概念问题) 1. 请解释Spring框架的核心容器是什么?它在Spring中起到什么作用? Spring框架的核心容器是IoC容器&#…...
【VLNs篇】07:NavRL—在动态环境中学习安全飞行
项目内容论文标题NavRL: 在动态环境中学习安全飞行 (NavRL: Learning Safe Flight in Dynamic Environments)核心问题解决无人机在包含静态和动态障碍物的复杂环境中进行安全、高效自主导航的挑战,克服传统方法和现有强化学习方法的局限性。核心算法基于近端策略优化…...
逻辑回归暴力训练预测金融欺诈
简述 「使用逻辑回归暴力预测金融欺诈,并不断增加特征维度持续测试」的做法,体现了一种逐步建模与迭代验证的实验思路,在金融欺诈检测中非常有价值,本文作为一篇回顾性记录了早年间公司给某行做反欺诈预测用到的技术和思路。百度…...
STM32---外部32.768K晶振(LSE)无法起振问题
晶振是否起振主要就检查两个1、晶振与MCU是否兼容;2、晶振的负载电容是否匹配 目录 一、判断晶振与MCU是否兼容 二、判断负载电容是否匹配 1. 晶振负载电容(CL)与匹配电容(CL1、CL2)的关系 2. 如何选择 CL1 和 CL…...
mac:大模型系列测试
0 MAC 前几天经过学生优惠以及国补17K入手了mac studio,然后这两天亲自测试其模型行运用能力如何,是否支持微调、推理速度等能力。下面进入正文。 1 mac 与 unsloth 按照下面的进行安装以及测试,是可以跑通文章里面的代码。训练速度也是很快的。 注意…...
