Redis-Redis高可用集群之水平扩展
Redis3.0以后的版本虽然有了集群功能,提供了比之前版本的哨兵模式更高的性能与可用性,但是集群的水平扩展却比较麻烦,今天就来带大家看看redis高可用集群如何做水平扩展,原始集群(见下图)由6个节点组成,6个节点分布在三台机器上,采用三主三从的模式
1、启动集群
# 启动整个集群
/usr/local/redis-5.0.3/src/redis-server /usr/local/redis-cluster/8001/redis.conf
/usr/local/redis-5.0.3/src/redis-server /usr/local/redis-cluster/8002/redis.conf
/usr/local/redis-5.0.3/src/redis-server /usr/local/redis-cluster/8003/redis.conf
/usr/local/redis-5.0.3/src/redis-server /usr/local/redis-cluster/8004/redis.conf
/usr/local/redis-5.0.3/src/redis-server /usr/local/redis-cluster/8005/redis.conf
/usr/local/redis-5.0.3/src/redis-server /usr/local/redis-cluster/8006/redis.conf
# 客户端连接8001端口的redis实例
/usr/local/redis-5.0.3/src/redis-cli -a zhuge -c -h 192.168.0.61 -p 8001
# 查看集群状态
192.168.0.61:8001> cluster nodes
从上图可以看出,整个集群运行正常,三个master节点和三个slave节点,8001端口的实例节点存储0-5460这些hash槽,8002端口的实例节点存储5461-10922这些hash槽,8003端口的实例节点存储10923-16383这些hash槽,这三个master节点存储的所有hash槽组成redis集群的存储槽位,slave点是每个主节点的备份从节点,不显示存储槽位
2、集群操作
我们在原始集群基础上再增加一主(8007)一从(8008),增加节点后的集群参见下图,新增节点用虚线框表示
-
增加redis实例
# 在/usr/local/redis-cluster下创建8007和8008文件夹,并拷贝8001文件夹下的redis.conf文件到8007和8008这两个文件夹下
mkdir 8007 8008
cd 8001
cp redis.conf /usr/local/redis-cluster/8007/
cp redis.conf /usr/local/redis-cluster/8008/# 修改8007文件夹下的redis.conf配置文件
vim /usr/local/redis-cluster/8007/redis.conf
# 修改如下内容:
port:8007
dir /usr/local/redis-cluster/8007/
cluster-config-file nodes-8007.conf# 修改8008文件夹下的redis.conf配置文件
vim /usr/local/redis-cluster/8008/redis.conf
修改内容如下:
port:8008
dir /usr/local/redis-cluster/8008/
cluster-config-file nodes-8008.conf# 启动8007和8008俩个服务并查看服务状态
/usr/local/redis-5.0.3/src/redis-server /usr/local/redis-cluster/8007/redis.conf
/usr/local/redis-5.0.3/src/redis-server /usr/local/redis-cluster/8008/redis.conf
ps -el | grep redis
-
查看redis集群的命令帮助
cd /usr/local/redis-5.0.3
src/redis-cli --cluster help
1.create:创建一个集群环境host1:port1 ... hostN:portN
2.call:可以执行redis命令
3.add-node:将一个节点添加到集群里,第一个参数为新节点的ip:port,第二个参数为集群中任意一个已经存在的节点的ip:port
4.del-node:移除一个节点
5.reshard:重新分片
6.check:检查集群状态
-
配置8007为集群主节点
# 使用add-node命令新增一个主节点8007(master),前面的ip:port为新增节点,后面的ip:port为已知存在节点,看到日志最后有"[OK] New node added correctly"提示代表新节点加入成功
/usr/local/redis-5.0.3/src/redis-cli -a zhuge --cluster add-node 192.168.0.61:8007 192.168.0.61:8001
# 查看集群状态
/usr/local/redis-5.0.3/src/redis-cli -a zhuge -c -h 192.168.0.61 -p 8001
192.168.0.61:8001> cluster nodes
注意:当添加节点成功以后,新增的节点不会有任何数据,因为它还没有分配任何的slot(hash槽),我们需要为新节点手工分配hash槽
# 使用redis-cli命令为8007分配hash槽,找到集群中的任意一个主节点,对其进行重新分片工作。
/usr/local/redis-5.0.3/src/redis-cli -a zhuge --cluster reshard 192.168.0.61:8001
输出如下:
... ...
How many slots do you want to move (from 1 to 16384)? 600
(ps:需要多少个槽移动到新的节点上,自己设置,比如600个hash槽)
What is the receiving node ID? 2728a594a0498e98e4b83a537e19f9a0a3790f38
(ps:把这600个hash槽移动到哪个节点上去,需要指定节点id)
Please enter all the source node IDs.
Type 'all' to use all the nodes as source nodes for the hash slots.
Type 'done' once you entered all the source nodes IDs.
Source node 1:all
(ps:输入all为从所有主节点(8001,8002,8003)中分别抽取相应的槽数指定到新节点中,抽取的总槽数为600个)
... ...
Do you want to proceed with the proposed reshard plan (yes/no)? yes
(ps:输入yes确认开始执行分片任务)
... ...
# 查看下最新的集群状态
/usr/local/redis-5.0.3/src/redis-cli -a zhuge -c -h 192.168.0.61 -p 8001
192.168.0.61:8001> cluster nodes
如上图所示,现在我们的8007已经有hash槽了,也就是说可以在8007上进行读写数据啦!到此为止我们的8007已经加入到集群中,并且是主节点(Master)
-
配置8008为8007的从节点
# 添加从节点8008到集群中去并查看集群状态
/usr/local/redis-5.0.3/src/redis-cli -a zhuge --cluster add-node 192.168.0.61:8008 192.168.0.61:8001
如图所示,还是一个master节点,没有被分配任何的hash槽。
# 我们需要执行replicate命令来指定当前节点(从节点)的主节点id为哪个,首先需要连接新加的8008节点的客户端,然后使用集群命令进行操作,把当前的8008(slave)节点指定到一个主节点下(这里使用之前创建的8007主节点)
/usr/local/redis-5.0.3/src/redis-cli -a zhuge -c -h 192.168.0.61 -p 8008
192.168.0.61:8008> cluster replicate 2728a594a0498e98e4b83a537e19f9a0a3790f38 #后面这串id为8007的节点id
# 查看集群状态,8008节点已成功添加为8007节点的从节点
-
删除8008从节点
# 用del-node删除从节点8008,指定删除节点ip和端口,以及节点id(红色为8008节点id)
/usr/local/redis-5.0.3/src/redis-cli -a zhuge --cluster del-node 192.168.0.61:8008 a1cfe35722d151cf70585cee21275565393c0956
# 再次查看集群状态,如下图所示,8008这个slave节点已经移除,并且该节点的redis服务也已被停止
-
删除8007主节点
最后,我们尝试删除之前加入的主节点8007,这个步骤相对比较麻烦一些,因为主节点的里面是有分配了hash槽的,所以我们这里必须先把8007里的hash槽放入到其他的可用主节点中去,然后再进行移除节点操作,不然会出现数据丢失问题(目前只能把master的数据迁移到一个节点上,暂时做不了平均分配功能),执行命令如下:
/usr/local/redis-5.0.3/src/redis-cli -a zhuge --cluster reshard 192.168.0.61:8007
输出如下:
... ...
How many slots do you want to move (from 1 to 16384)? 600
What is the receiving node ID? dfca1388f124dec92f394a7cc85cf98cfa02f86f
(ps:这里是需要把数据移动到哪?8001的主节点id)
Please enter all the source node IDs.
Type 'all' to use all the nodes as source nodes for the hash slots.
Type 'done' once you entered all the source nodes IDs.
Source node 1:2728a594a0498e98e4b83a537e19f9a0a3790f38
(ps:这里是需要数据源,也就是我们的8007节点id)
Source node 2:done
(ps:这里直接输入done 开始生成迁移计划)
... ...
Do you want to proceed with the proposed reshard plan (yes/no)? Yes
(ps:这里输入yes开始迁移)
至此,我们已经成功的把8007主节点的数据迁移到8001上去了,我们可以看一下现在的集群状态如下图,你会发现8007下面已经没有任何hash槽了,证明迁移成功!
# 最后我们直接使用del-node命令删除8007主节点即可
/usr/local/redis-5.0.3/src/redis-cli -a zhuge --cluster del-node 192.168.0.61:8007 2728a594a0498e98e4b83a537e19f9a0a3790f38
# 查看集群状态,一切还原为最初始状态啦!大功告成!
相关文章:

Redis-Redis高可用集群之水平扩展
Redis3.0以后的版本虽然有了集群功能,提供了比之前版本的哨兵模式更高的性能与可用性,但是集群的水平扩展却比较麻烦,今天就来带大家看看redis高可用集群如何做水平扩展,原始集群(见下图)由6个节点组成,6个节点分布在三…...
2023全球数字贸易创新大赛-人工智能元宇宙-4-10
目录 竞赛感悟: 创业的话 好的项目 数字工厂,智慧制造:集群控制的安全问题...
go defer用法_类似与python_java_finially
defer 执行 时间 defer 一般 定义在 函数 开头, 但是 他会 最后 被执行 A defer statement defers the execution of a function until the surrounding function returns. 如果说 为什么 不在 末尾 定义 defer 呢, 因为 当 错误 发生时, 程序 执行 不到 末尾 就会 崩溃. d…...

Log4j2.xml不生效:WARN StatusLogger Multiple logging implementations found:
背景 将 -Dlog4j.debug 添加到IDEA的类的启动配置中 运行上图代码,这里log4j2.xml控制的日志级别是info,很明显是没生效。 DEBUG StatusLogger org.slf4j.helpers.Log4jLoggerFactory is not on classpath. Good! DEBUG StatusLogger Using Shutdow…...

【LeetCode】挑战100天 Day14(热题+面试经典150题)
【LeetCode】挑战100天 Day14(热题面试经典150题) 一、LeetCode介绍二、LeetCode 热题 HOT 100-162.1 题目2.2 题解 三、面试经典 150 题-163.1 题目3.2 题解 一、LeetCode介绍 LeetCode是一个在线编程网站,提供各种算法和数据结构的题目&…...

VMware安装windows操作系统
一、下载镜像包 地址:镜像包地址。 找到需要的版本下载镜像包。 二、安装 打开VMware新建虚拟机,选择用镜像文件。将下载的镜像包加载进去即可。...

历时半年,我发布了一款习惯打卡小程序
半年多前,我一直困扰于如何记录习惯打卡情况,在参考了市面上绝大多数的习惯培养程序后,终于创建并发布了这款习惯打卡小程序。 “我的小日常打卡”小程序主要提供习惯打卡和专注训练功能。致力于培养用户养成一个个好的习惯,改掉…...
被DDOS了怎么办 要如何应对
DDoS攻击的特点和类型 1. 特点 DDoS攻击的特点是通过大量合法的请求或者无效的请求,消耗目标服务器的网络带宽和系统资源,使其无法正常运行。攻击者通常使用多个主机发起攻击,以达到更高的攻击效果。 2. 常见类型 (1)S…...

时间序列预测实战(十七)PyTorch实现LSTM-GRU模型长期预测并可视化结果(附代码+数据集+详细讲解)
一、本文介绍 本文给大家带来的实战内容是利用PyTorch实现LSTM-GRU模型,LSTM和GRU都分别是RNN中最常用Cell之一,也都是时间序列预测中最常见的结构单元之一,本文的内容将会从实战的角度带你分析LSTM和GRU的机制和效果,同时如果你…...

【免费使用】基于PaddleSeg开源项目开发的人像抠图Web API接口
基于PaddleSeg开源项目开发的人像抠图API接口,服务器不存储照片大家可放心使用。 1、请求接口 请求地址:http://apiseg.hysys.cn/predict_img 请求方式:POST 请求参数:{"image":"/9j/4AAQ..."} 参数是jso…...
Centos7 Python环境和yum修复
1、删除现有残余包 [rootlocalhost ]# rpm -qa|grep python|xargs rpm -ev --allmatches --nodeps[rootlocalhost ]# rpm -qa|grep yum|xargs rpm -ev --allmatches --nodeps[rootlocalhost ]# whereis python |xargs rm -frv[rootlocalhost ]# whereis python ##验证清除&…...

Ubuntu下使用protoBuf
一、protobuf简介: 1.1 protobuf的定义: protobuf是用来干嘛的? protobuf是一种用于 对结构数据进行序列化的工具,从而实现 数据存储和交换。 (主要用于网络通信中 收发两端进行消息交互。所谓的“结构数据”是指类…...

AT89S52单片机
目录 一.AT89S52单片机的硬件组成 1.CPU(微处理器) (1)运算器 (2)控制器 2.数据存储器 (RAM) (1)片内数据存储器 (2)片外数据存储器 3.程序存储器(Flash ROM) 4.定时器/计数器 5.中断系统 6.串行口 7.P0口、P1口、P2口和P3口 8.特殊功能寄存器 (SFR) 常用的特殊功…...

数字孪生智慧校园 Web 3D 可视化监测
当今,智慧校园发展阶段亟需推动信息可视化建设与发展,将大数据、云计算、可视化等高新技术相融合,为校园师生创造科学智能的学习环境,并实现教学资源最大化和信息服务智能化。帮助学校更好地应用校园可视化技术,提升校…...

Python Web框架的三强之争:Flask、Django和FastAPI
JetBrains 公布 2022 Python 开发者调查结果。 完整报告地址:https://lp.jetbrains.com/zh-cn/python-developers-survey-2022/ 这是由 Python 软件基金会 (PSF) 和 JetBrains 共同开展的第六次官方年度 Python 开发者调查,回复于 2022 年 10 月至 12 …...
本地缓存与分布式缓存
一、缓存的概念 在服务端编程当中,缓存主要是指将数据库的数据加载到内存中,之后对该数据的访问都在内存中完成,从而减少了对数据库的访问,解决了高并发场景中数据库容易成为性能瓶颈的问题;以及基于内存的访问速度高…...

LabVIEW如何获取波形图上游标所在位置的数值
LabVIEW如何获取波形图上游标所在位置的数值 获取游标所在位置数值的一种方法是利用波形图的游标列表属性。 在VI的程序框图中,右键单击波形图并选择创建引用 ,然后将创建的引用节点放在程序框图上。 在程序框图上放置一个属性节点,并将其…...

八股文面试day6
什么是代理?为什么要用动态代理? 代理模式大概意思是:为其他对象提供一个代理项或者是占位符,以控制对这个对象的访问 代理模式核心思想:创建一个代理对象,在客户端和目标对象之间的一个中介,…...

【Unity】EventSystem.current.IsPointerOverGameObject()对碰撞体起作用
本来我是用 EventSystem.current.IsPointerOverGameObject()来检测是否点击在UI上的,但是发现,他对我的碰撞体也是返回ture,研究半天。。。。找不出问题,然后发现我的相机上挂载了PhysicsRaycaster,去掉之后就好了,至于…...
形态学操作—闭运算
闭运算(Closing)是图像形态学中的一种操作,它结合了膨胀(Dilation)和腐蚀(Erosion)操作。闭运算的原理是先对图像执行腐蚀操作,然后再进行膨胀操作。这个过程能够消除图像中的小孔洞…...

业务系统对接大模型的基础方案:架构设计与关键步骤
业务系统对接大模型:架构设计与关键步骤 在当今数字化转型的浪潮中,大语言模型(LLM)已成为企业提升业务效率和创新能力的关键技术之一。将大模型集成到业务系统中,不仅可以优化用户体验,还能为业务决策提供…...

JavaSec-RCE
简介 RCE(Remote Code Execution),可以分为:命令注入(Command Injection)、代码注入(Code Injection) 代码注入 1.漏洞场景:Groovy代码注入 Groovy是一种基于JVM的动态语言,语法简洁,支持闭包、动态类型和Java互操作性,…...
OpenLayers 可视化之热力图
注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 热力图(Heatmap)又叫热点图,是一种通过特殊高亮显示事物密度分布、变化趋势的数据可视化技术。采用颜色的深浅来显示…...
CVPR 2025 MIMO: 支持视觉指代和像素grounding 的医学视觉语言模型
CVPR 2025 | MIMO:支持视觉指代和像素对齐的医学视觉语言模型 论文信息 标题:MIMO: A medical vision language model with visual referring multimodal input and pixel grounding multimodal output作者:Yanyuan Chen, Dexuan Xu, Yu Hu…...

(十)学生端搭建
本次旨在将之前的已完成的部分功能进行拼装到学生端,同时完善学生端的构建。本次工作主要包括: 1.学生端整体界面布局 2.模拟考场与部分个人画像流程的串联 3.整体学生端逻辑 一、学生端 在主界面可以选择自己的用户角色 选择学生则进入学生登录界面…...

盘古信息PCB行业解决方案:以全域场景重构,激活智造新未来
一、破局:PCB行业的时代之问 在数字经济蓬勃发展的浪潮中,PCB(印制电路板)作为 “电子产品之母”,其重要性愈发凸显。随着 5G、人工智能等新兴技术的加速渗透,PCB行业面临着前所未有的挑战与机遇。产品迭代…...

SCAU期末笔记 - 数据分析与数据挖掘题库解析
这门怎么题库答案不全啊日 来简单学一下子来 一、选择题(可多选) 将原始数据进行集成、变换、维度规约、数值规约是在以下哪个步骤的任务?(C) A. 频繁模式挖掘 B.分类和预测 C.数据预处理 D.数据流挖掘 A. 频繁模式挖掘:专注于发现数据中…...

Linux相关概念和易错知识点(42)(TCP的连接管理、可靠性、面临复杂网络的处理)
目录 1.TCP的连接管理机制(1)三次握手①握手过程②对握手过程的理解 (2)四次挥手(3)握手和挥手的触发(4)状态切换①挥手过程中状态的切换②握手过程中状态的切换 2.TCP的可靠性&…...
【磁盘】每天掌握一个Linux命令 - iostat
目录 【磁盘】每天掌握一个Linux命令 - iostat工具概述安装方式核心功能基础用法进阶操作实战案例面试题场景生产场景 注意事项 【磁盘】每天掌握一个Linux命令 - iostat 工具概述 iostat(I/O Statistics)是Linux系统下用于监视系统输入输出设备和CPU使…...
工程地质软件市场:发展现状、趋势与策略建议
一、引言 在工程建设领域,准确把握地质条件是确保项目顺利推进和安全运营的关键。工程地质软件作为处理、分析、模拟和展示工程地质数据的重要工具,正发挥着日益重要的作用。它凭借强大的数据处理能力、三维建模功能、空间分析工具和可视化展示手段&…...