当前位置: 首页 > news >正文

【OpenCV实现图像:使用OpenCV进行图像处理之透视变换】

文章目录

    • 概要
    • 计算公式
    • 举个栗子
    • 实际应用
    • 小结

概要

透视变换(Perspective Transformation)是一种图像处理中常用的变换手段,它用于将图像从一个视角映射到另一个视角,常被称为投影映射。透视变换可以用于矫正图像中的透视畸变,使得图像中的物体在新的视平面上呈现更加规则的形状。

透视变换通常涉及到寻找图像中的特定点集,这些点对应于真实场景中的特定位置。通过这些点的映射关系,可以计算出透视变换的矩阵,然后将整个图像进行变换。在实际应用中,透视变换常用于校准摄像头、图像矫正、虚拟增强现实等领域。

计算公式

一般来说,通用的图像变换公式如下所示:
在这里插入图片描述
上述公式中,u,v代表原始图像坐标,x,y为经过透视变换的图片坐标,其中变换矩阵为3X3形式。进而可以得到:
在这里插入图片描述

举个栗子

在这里插入图片描述
直观的来看,透视变换的作用就是将左侧图像的坐标点

[[50,0],[150,0],[0,200],[200,200]]

转化为新的坐标

[[0,0],[200,0],[0,200],[200,200]]

通过计算我们知道,转换矩阵如下
在这里插入图片描述
采用左上角的点(50,0)代入公式,
在这里插入图片描述
接着将列向量的前两维度除以第三维执行归一化:
在这里插入图片描述

所以原图左上角点执行透视变换后的映射关系:

在这里插入图片描述

实际应用

1)读入图像

首先我们来读入一副彩色图像,如下:

import cv2
import numpy as npimg = cv2.imread("image/sample.jpg")
h, w, c = img.shape  # 获取图像的高度、宽度和通道数

2)挑选原图四个点
接着我们需要挑选四个点,我们这里采用左上,左下,右下和右上,下面的代码把我们挑选的四个点画到图像上.

src_list = [(61, 70), (151, 217), (269, 143), (160, 29)]# 在图像上标出四个点
for i, pt in enumerate(src_list):cv2.circle(img, pt, 5, (0, 0, 255), -1)cv2.putText(img, str(i+1), (pt[0]+5, pt[1]+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)# 将挑选的四个点转换为NumPy数组
pts1 = np.float32(src_list)

3)显示图像:

cv2.imshow('Original Image with Selected Points', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

完整代码:

import cv2
import numpy as npimg = cv2.imread("img_5.png")
h, w, c = img.shape  # 获取图像的高度、宽度和通道数
src_list = [(61, 70), (151, 217), (269, 143), (160, 29)]# 在图像上标出四个点
for i, pt in enumerate(src_list):cv2.circle(img, pt, 5, (0, 0, 255), -1)cv2.putText(img, str(i+1), (pt[0]+5, pt[1]+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)# 将挑选的四个点转换为NumPy数组
pts1 = np.float32(src_list)
cv2.imshow('Original Image with Selected Points', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
以上四个点标注位置不对,所以需要改变点的位置.
在这里插入图片描述
4)进行透视变换

首先选择四个目的图像上的点,然后调用openv函数进行透视变换.

pts2 = np.float32([[0, 0], [0, w - 2], [h - 2, w - 2], [h - 2, 0]])
matrix = cv2.getPerspectiveTransform(pts1, pts2)
result = cv2.warpPerspective(img, matrix, (h, w))
cv2.imshow("Image", img)
cv2.imshow("Perspective transformation", result)
cv2.waitKey(0)

全部

import cv2
import numpy as npimg = cv2.imread("img_5.png")
h, w, c = img.shape  # 获取图像的高度、宽度和通道数
src_list = [(81, 325), (105, 580), (590, 340), (480, 110)]# 在图像上标出四个点
for i, pt in enumerate(src_list):cv2.circle(img, pt, 5, (0, 0, 255), -1)cv2.putText(img, str(i+1), (pt[0]+5, pt[1]+10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 255), 2)# 将挑选的四个点转换为NumPy数组
pts1 = np.float32(src_list)# 选择目标图像上的四个点
pts2 = np.float32([[0, 0], [0, w - 2], [h - 2, w - 2], [h - 2, 0]])# 计算透视变换矩阵
matrix = cv2.getPerspectiveTransform(pts1, pts2)# 应用透视变换
result = cv2.warpPerspective(img, matrix, (w, h))  # 修正图像大小# 显示原始图像、透视变换前后的图像
cv2.imshow("Original Image with Selected Points", img)
cv2.imshow("Perspective Transformation", result)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

小结

使用OpenCV中的透视变换的基本步骤:

找到四个特定的点:
在原始图像中选择四个特定的点,这四个点对应于一个矩形或者平行四边形在真实场景中的投影。

计算透视变换矩阵:
利用这四个点的映射关系,计算透视变换矩阵。OpenCV提供了 cv2.getPerspectiveTransform 函数来实现这一步骤。

应用透视变换:
利用计算得到的透视变换矩阵,对整个图像进行透视变换。OpenCV提供了 cv2.warpPerspective 函数用于执行透视变换。

相关文章:

【OpenCV实现图像:使用OpenCV进行图像处理之透视变换】

文章目录 概要计算公式举个栗子实际应用小结 概要 透视变换(Perspective Transformation)是一种图像处理中常用的变换手段,它用于将图像从一个视角映射到另一个视角,常被称为投影映射。透视变换可以用于矫正图像中的透视畸变&…...

Vue中学习笔记-数据代理

文章目录 前文提要数据代理的概念MVVM模型和Vue中的数据代理M,模型V,视图VM,视图模型 前文提要 本人仅做个人学习记录,如有错误,请多包涵 数据代理的概念 使用一个对象代理对另一个对象中属性的操作。 MVVM模型和Vu…...

IDEA 配置maven结合案例使用篇

1. 项目需求和结构分析 需求案例:搭建一个电商平台项目,该平台包括用户服务、订单服务、通用工具模块等。 项目架构: 用户服务:负责处理用户相关的逻辑,例如用户信息的管理、用户注册、登录等。 spring-context 6.0.…...

基于白鲸算法优化概率神经网络PNN的分类预测 - 附代码

基于白鲸算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于白鲸算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于白鲸优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要:针对PNN神经网络的光滑…...

Android使用Kotlin利用Gson解析多层嵌套Json数据

文章目录 1、依赖2、解析 1、依赖 build.gradle(app)中加入 dependencies { implementation com.google.code.gson:gson:2.8.9 }2、解析 假设这是要解析Json数据 var responseStr "{"code": 200,"message": "操作成功","data&quo…...

DOM事件的传播机制

DOM事件的传播机制是指当一个事件在DOM树中触发时,它是如何在各个元素之间传播的。DOM事件传播机制分为三个阶段:捕获阶段、目标阶段和冒泡阶段。此外,还有一种常用的技术称为事件委托,它能够简化事件处理程序的绑定和管理。本文将…...

gitlab利用CI多工程持续构建

搭建CI的过程中有多个工程的时候,一个完美的构建过程往往是子工程上的更新(push 或者是merge)触发父工程的构建,这就需要如下建立一个downstream pipeline 子仓库1 .gitlab-ci.yml stages:- buildbuild_job:stage: buildtrigger:project: test_user/tes…...

【C++初阶】四、类和对象(构造函数、析构函数、拷贝构造函数、赋值运算符重载函数)

相关代码gitee自取: C语言学习日记: 加油努力 (gitee.com) 接上期: 【C初阶】三、类和对象 (面向过程、class类、类的访问限定符和封装、类的实例化、类对象模型、this指针) -CSDN博客 引入:类的六个默认成员函数…...

js粒子效果(二)

效果: 代码: <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Particle Animation</title><…...

01.让自己习惯C++

让自己习惯C 条款1&#xff1a;视C为一个语言联邦 条款1中提到了将C看作为一个“语言联邦”的概念。具体来说&#xff0c;“语言联邦”是指将C看作由多种不同的子语言组成的联邦。每种子语言都有自己的惯用法、工具和库&#xff0c;可以用来解决特定的问题。因此&#xff0c;…...

ElementUI table+dialog实现一个简单的可编辑的表格

table组件如何实现可编辑呢&#xff1f; 我的需求是把table组件那样的表格&#xff0c;实现它点击可以弹出一个框&#xff0c;然后在这个框里面输入你的东西&#xff0c;然后将他回显回去&#xff0c;当然&#xff0c;输入的有可能是时间啥的。 为什么要弹出弹层不在框上直接…...

Rust语言精讲:数据类型全解析

大家好&#xff01;我是lincyang。 今天&#xff0c;我们将深入探讨Rust语言中的数据类型&#xff0c;这是理解和掌握Rust的基础。 Rust语言数据类型概览 Rust是静态类型语言&#xff0c;所有变量类型在编译时确定。Rust的数据类型分为两类&#xff1a;标量类型和复合类型。…...

《数据结构、算法与应用C++语言描述》-代码实现散列表(线性探查与链式散列)

散列表 完整可编译运行代码&#xff1a;Github:Data-Structures-Algorithms-and-Applications/_22hash/ 定义 字典的另一种表示方法是散列&#xff08;hashing&#xff09;。它用一个散列函数&#xff08;也称哈希函数&#xff09;把字典的数对映射到一个散列表&#xff08…...

Hadoop学习笔记:运行wordcount对文件字符串进行统计案例

文/朱季谦 我最近使用四台Centos虚拟机搭建了一套分布式hadoop环境&#xff0c;简单模拟了线上上的hadoop真实分布式集群&#xff0c;主要用于业余学习大数据相关体系。 其中&#xff0c;一台服务器作为NameNode&#xff0c;一台作为Secondary NameNode&#xff0c;剩下两台当…...

python编写简单登录系统(密码混淆加密)

输入非123的数字会显示输入123选项&#xff0c;输入空格或者回车会报错&#xff0c;因为choice设置成int型先输入2个正常账户进去预防了用户名为空&#xff0c;密码为空或者小于3个&#xff0c;用户名已存在3种情况只有用户名和对应的密码都输入正确才能登录成功输入选项3退出代…...

UVA1025 城市里的间谍 A Spy in the Metro

UVA1025 城市里的间谍 A Spy in the Metro 题面翻译 题目大意 某城市地铁是一条直线&#xff0c;有 n n n&#xff08; 2 ≤ n ≤ 50 2\leq n\leq 50 2≤n≤50&#xff09;个车站&#xff0c;从左到右编号 1 … n 1\ldots n 1…n。有 M 1 M_1 M1​ 辆列车从第 1 1 1 站开…...

【科普知识】什么是步进电机?

德国百格拉公司于1973年发明了五相混合式步进电机及其驱动器&#xff0c;1993年又推出了性能更加优越的三相混合式步进电机。我国在80年代以前&#xff0c;一直是反应式步进电机占统治地位&#xff0c;混合式步进电机是80年代后期才开始发展。 步进电机是一种用电脉冲信号进行…...

AWS云服务器EC2实例实现ByConity快速部署

1. 前言 亚马逊是全球最大的在线零售商和云计算服务提供商。AWS云服务器在全球范围内都备受推崇&#xff0c;被众多业内人士誉为“云计算服务的行业标准”。在国内&#xff0c;亚马逊AWS也以其卓越的性能和服务满足了众多用户的需求&#xff0c;拥有着较高的市场份额和竞争力。…...

Docker的项目资源参考

Docker的项目资源包括以下内容&#xff1a; Docker官方网站&#xff1a;https://www.docker.com/ Docker Hub&#xff1a;https://hub.docker.com/ Docker文档&#xff1a;https://docs.docker.com/ Docker GitHub仓库&#xff1a;https://github.com/docker Docker官方博客…...

wsl-ubuntu 系统端口总被主机端口占用问题解决

wsl-ubuntu 系统端口总被主机端口占用问题解决 0. 问题描述1. 解决方法 0. 问题描述 wsl-ubuntu 子系统中的服务&#xff0c;总是启动失败&#xff0c;错误信息是端口被占用。 用一些命令查看&#xff0c;被占用的端口也没有用服务启动。 1. 解决方法 运行&#xff0c; ne…...

uni-app学习笔记二十二---使用vite.config.js全局导入常用依赖

在前面的练习中&#xff0c;每个页面需要使用ref&#xff0c;onShow等生命周期钩子函数时都需要像下面这样导入 import {onMounted, ref} from "vue" 如果不想每个页面都导入&#xff0c;需要使用node.js命令npm安装unplugin-auto-import npm install unplugin-au…...

CocosCreator 之 JavaScript/TypeScript和Java的相互交互

引擎版本&#xff1a; 3.8.1 语言&#xff1a; JavaScript/TypeScript、C、Java 环境&#xff1a;Window 参考&#xff1a;Java原生反射机制 您好&#xff0c;我是鹤九日&#xff01; 回顾 在上篇文章中&#xff1a;CocosCreator Android项目接入UnityAds 广告SDK。 我们简单讲…...

Device Mapper 机制

Device Mapper 机制详解 Device Mapper&#xff08;简称 DM&#xff09;是 Linux 内核中的一套通用块设备映射框架&#xff0c;为 LVM、加密磁盘、RAID 等提供底层支持。本文将详细介绍 Device Mapper 的原理、实现、内核配置、常用工具、操作测试流程&#xff0c;并配以详细的…...

基于PHP的连锁酒店管理系统

有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...

6️⃣Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙

Go 语言中的哈希、加密与序列化:通往区块链世界的钥匙 一、前言:离区块链还有多远? 区块链听起来可能遥不可及,似乎是只有密码学专家和资深工程师才能涉足的领域。但事实上,构建一个区块链的核心并不复杂,尤其当你已经掌握了一门系统编程语言,比如 Go。 要真正理解区…...

【把数组变成一棵树】有序数组秒变平衡BST,原来可以这么优雅!

【把数组变成一棵树】有序数组秒变平衡BST,原来可以这么优雅! 🌱 前言:一棵树的浪漫,从数组开始说起 程序员的世界里,数组是最常见的基本结构之一,几乎每种语言、每种算法都少不了它。可你有没有想过,一组看似“线性排列”的有序数组,竟然可以**“长”成一棵平衡的二…...

pgsql:还原数据库后出现重复序列导致“more than one owned sequence found“报错问题的解决

问题&#xff1a; pgsql数据库通过备份数据库文件进行还原时&#xff0c;如果表中有自增序列&#xff0c;还原后可能会出现重复的序列&#xff0c;此时若向表中插入新行时会出现“more than one owned sequence found”的报错提示。 点击菜单“其它”-》“序列”&#xff0c;…...

GraphRAG优化新思路-开源的ROGRAG框架

目前的如微软开源的GraphRAG的工作流程都较为复杂&#xff0c;难以孤立地评估各个组件的贡献&#xff0c;传统的检索方法在处理复杂推理任务时可能不够有效&#xff0c;特别是在需要理解实体间关系或多跳知识的情况下。先说结论&#xff0c;看完后感觉这个框架性能上不会比Grap…...

深入解析 ReentrantLock:原理、公平锁与非公平锁的较量

ReentrantLock 是 Java 中 java.util.concurrent.locks 包下的一个重要类,用于实现线程同步,支持可重入性,并且可以选择公平锁或非公平锁的实现方式。下面将详细介绍 ReentrantLock 的实现原理以及公平锁和非公平锁的区别。 ReentrantLock 实现原理 基本架构 ReentrantLo…...

ZYNQ学习记录FPGA(二)Verilog语言

一、Verilog简介 1.1 HDL&#xff08;Hardware Description language&#xff09; 在解释HDL之前&#xff0c;先来了解一下数字系统设计的流程&#xff1a;逻辑设计 -> 电路实现 -> 系统验证。 逻辑设计又称前端&#xff0c;在这个过程中就需要用到HDL&#xff0c;正文…...