已解决ERROR: Failed building wheel for opencv-python-headless
已解决ERROR: Failed building wheel for opencv-python-headless
Failed to build opencv-python-headless
ERROR: Could not build wheels for opencv-python-headless, which is required to install pyproject.toml-based projects报错信息亲测有效
文章目录
- 报错问题
- 报错翻译
- 报错原因
- 解决方法1:在线安装
- 解决方法2:离线安装
- 联系博主免费帮忙解决报错
报错问题
粉丝群里面的一个小伙伴遇到问题跑来私信我,想用pip安装ddddocr模块,但是发生了报错(当时他心里瞬间凉了一大截,跑来找我求助,然后顺利帮助他解决了,顺便记录一下希望可以帮助到更多遇到这个bug不会解决的小伙伴),报错代码如下所示:
pip3 install ddddocr
报错信息截图如下所示:

报错翻译
报错信息翻译如下所示:
错误:为opencv python headless构建轮子失败
无法构建opencv python headless
错误:无法为opencv python headless构建轮子,这是安装基于pyproject.toml的项目所必需的
报错原因
报错原因:
要想安装ddddocr模块,需要安装其他的第三方依赖模块。
小伙伴们按下面的代码安装即可!!!
解决方法1:在线安装
pip代码直接在线安装,运行下面的命令即可:
pip3 install opencv-python-headless
解决方法2:离线安装
(1)先去官网下载对应的opencv-python-headless版本:
https://pypi.org/project/opencv-python-headless/3.4.18.65/#files
(2)点击DownLoad,然后选择自己Python版本的whl文件,cp36:表示Python3.6(以此类推),amd64:表示电脑64位:

粉丝的python是3.6版本的,所以下载了的3.6
(3)进入下载whl存放的文件的路径,输入下面命令(注意这里需要你自己下载的文件名):
pip3 install opencv_python_headless-3.4.18.65-cp36-abi3-win_amd64.whl
(4)出现版本号表示安装成功了:

以上是此问题报错原因的解决方法,欢迎评论区留言讨论是否能解决,博主看到会给出回复和你所遇到的报错问题解决方法!!!
联系博主免费帮忙解决报错
本文已收录于:《告别Bug专栏》,欢迎免费订阅!!!
本专栏用于记录学习和工作中遇到的各种疑难编程Bug问题,以及粉丝群里小伙伴提出的各种问题,文章形式:报错代码 + 报错翻译 + 报错原因 + 解决方法,包括程序安装、运行程序过程中遇到的等等问题,博主心愿:让天下没有难学的编程,从此告别Bug!!!
订阅专栏 + 关注博主后,扫描下方二维码进全栈学习互助交流群可以帮忙解决问题,并且可以免费领取300本IT电子书籍、学习资料、简历模板、面试题库,和小伙伴们交流学习、抱团取暖,共同进步!!!

相关文章:
已解决ERROR: Failed building wheel for opencv-python-headless
已解决ERROR: Failed building wheel for opencv-python-headless Failed to build opencv-python-headless ERROR: Could not build wheels for opencv-python-headless, which is required to install pyproject.toml-based projects报错信息亲测有效 文章目录报错问题报错翻…...
每日获取安全资讯的网站,国内外共120个
国内 FreeBuf(https://www.freebuf.com/) 安全客(https://www.anquanke.com/) 雷锋网安全(https://www.leiphone.com/category/security) 先知社区(https://xz.aliyun.com/) CSDN安全…...
HUN工训中心:开关电路和按键信号抖动
工训中心的牛马实验 1.实验目的: 1) 认识开关电路,掌握按键状态判别、开关电路中逻辑电平测量、逻辑值和逻辑函数电路。 2) 掌握按键信号抖动简单处理方法。 3) 实现按键计数电路。 2.实验资源: HBE硬件基础电路实验箱、示波器、万用表…...
WordPress 主题 SEO 标题相关函数和过滤器教程wp_get_document_title()
WordPress 4.4.0 版本开始,加入了 wp_get_document_title(); 这个函数,而 wp_title(); 已经 deprecated 不推荐使用。因此,如果想要启用 WordPress 主题标题功能,在不安装 WordPress SEO 插件的情况下,可以使用以下代码…...
Qt 事件机制
【1】事件 事件是可以被控件识别的操作。如按下确定按钮、选择某个单选按钮或复选框。 每种控件有自己可识别的事件,如窗体的加载、单击、双击等事件,编辑框(文本框)的文本改变事件等等。 事件就是用户对窗口上各种组件的操作。…...
【Python】Numpy--np.linalg.eig()求对称矩阵的特征值和特征向量
【Python】Numpy–np.linalg.eig()求对称矩阵的特征值和特征向量 文章目录【Python】Numpy--np.linalg.eig()求对称矩阵的特征值和特征向量1. 介绍2. API3. 代码示例1. 介绍 特征分解(Eigendecomposition),又称谱分解(Spectral d…...
医疗床头卡(WIFI方案)
一、产品特性 7.5寸墨水屏显示WIFI无线通信,极简部署,远程控制按键及高亮LED指示灯指示800*480点阵屏幕锂电池供电,支持USB充电DIY界面支持文本/条码/二维码/图片超低功耗/超长寿命,一次充电可用一年基于现有Wifi环境,…...
[YOLO] yolo博客笔记汇总(自用
pip下载速度太慢,国内镜像: 国内镜像解决pip下载太慢https://blog.csdn.net/weixin_51995286/article/details/113972534 YOLO v2和V3 关于设置生成anchorbox,Boundingbox边框回归的过程详细解读 YOLO v2和V3 关于设置生成an…...
Linux 常用 API 函数
文章目录1. 系统调用与库函数1.1 什么是系统调用1.2 系统调用的实现1.3 系统调用和库函数的区别2. 虚拟内存空间3. 错误处理函数4. C 库中 IO 函数工作流程5. 文件描述符6. 常用文件 IO 函数6.1 open 函数6.2 close 函数6.3 write 函数6.4 read 函数6.5 lseek 函数7. 文件操作相…...
【转载】bootstrap自定义样式-bootstrap侧边导航栏的实现
bootstrap自带的响应式导航栏是向下滑动的,但是有时满足不了个性化的需求: 侧滑栏使用定位fixed 使用bootstrap响应式使用工具类 visible-sm visible-xs hidden-xs hidden-sm等对不同屏幕适配 侧滑栏的侧滑效果不使用jquery方法来实现,使用的是css3 tr…...
奇瑞x华为纯电智选车来了,新版ADS成本将大幅下降
作者 | 德新 编辑 | 于婷HiEV获悉,问界M5将在4月迎来搭载高阶辅助驾驶的新款,而M9将在今年秋天发布。 奇瑞一侧,华为将与奇瑞首先推出纯电轿车,代号EH3。新车将在奇瑞位于芜湖江北新区的智能网联超级二工厂组装下线。目前超级二工…...
机器学习的特征归一化Normalization
为什么需要做归一化? 为了消除数据特征之间的量纲影响,就需要对特征进行归一化处理,使得不同指标之间具有可比性。对特征归一化可以将所有特征都统一到一个大致相同的数值区间内。 为了后⾯数据处理的⽅便,归⼀化可以避免⼀些不…...
程序员看过都说好的资源网站,看看你都用过哪些?
程序员必备的相关资源网站一.图片专区1.表情包(1)发表情(2)逗比拯救世界(3)搞怪图片生成(4)哇咔工具2.图标库(1)Font Awesome(2)iconf…...
Win11的两个实用技巧系列之设置系统还原点的方法、安全启动状态开启方法
Win11如何设置系统还原点?Win11设置系统还原点的方法很多用户下载安装win11后应该如何创建还原点呢?现在我通过这篇文章给大家介绍一下Win11如何设置系统还原点?在Windows系统中有一个系统还原功能可以帮助我们在电脑出现问题的时候还原到设置的时间上&…...
【Linux】项目的自动化构建-make/makefile
💣1.背景会不会写makefile,从一个侧面说明了一个人是否具备完成大型工程的能力 一个工程中的源文件不计数,其按类型、功能、模块分别放在若干个目录中,makefile定义了一系列的 规则来指定,哪些文件需要先编译ÿ…...
【Redis学习2】Redis常用数据结构与应用场景
Redis常用数据结构与应用场景 redis中存储数据是以key-value键值对的方式去存储的,其中key为string字符类型,value的数据类型可以是string(字符串)、list(列表)、hash(字典)、set(集合) 、 zset(有序集合)。 这5种数据类型在开发中可以应对大部分场景的…...
踩了大坑:https 证书访问错乱
文章目录一、问题排查及解决问题一:证书加载错乱问题二:DNS 解析污染问题问题三:浏览器校验问题二、终极解决方法2.1 可外网访问域名2.2 只能内网访问域名2.3 内网自动化配置2.4 错误解决一、问题排查及解决 今天遇到这样一个问题࿰…...
大数据技术之Hive(四)分区表和分桶表、文件格式和压缩
一、分区表和分桶表1.1 分区表partitionhive中的分区就是把一张大表的数据按照业务需要分散的存储到多个目录,每个目录就称为该表的一个分区。在查询时通过where子句中的表达式选择式选择查询所需要的分区,这样的查询效率辉提高很多。1.1.1 分区表基本语…...
环形缓冲区(c语言)
1、概念介绍 在我们需要处理大量数据的时候,不能存储所有的数据,只能先处理先来的,然后将这个数据释放,再去处理下一个数据。 如果在一个线性的缓冲区中,那些已经被处理的数据的内存就会被浪费掉。因为后面的数据只能…...
创建自助服务知识库的指南
在SaaS领域,自助文档是你可以在客户登录你的网站时为他们提供的最灵活的帮助方式,简单来说,一个自助知识库是一个可以帮助许多客户的文档,拥有出色的自助服务知识库,放在官网或者醒目的地方,借助自助服务知…...
反射获取方法和属性
Java反射获取方法 在Java中,反射(Reflection)是一种强大的机制,允许程序在运行时访问和操作类的内部属性和方法。通过反射,可以动态地创建对象、调用方法、改变属性值,这在很多Java框架中如Spring和Hiberna…...
大数据学习(132)-HIve数据分析
🍋🍋大数据学习🍋🍋 🔥系列专栏: 👑哲学语录: 用力所能及,改变世界。 💖如果觉得博主的文章还不错的话,请点赞👍收藏⭐️留言Ǵ…...
什么是Ansible Jinja2
理解 Ansible Jinja2 模板 Ansible 是一款功能强大的开源自动化工具,可让您无缝地管理和配置系统。Ansible 的一大亮点是它使用 Jinja2 模板,允许您根据变量数据动态生成文件、配置设置和脚本。本文将向您介绍 Ansible 中的 Jinja2 模板,并通…...
React---day11
14.4 react-redux第三方库 提供connect、thunk之类的函数 以获取一个banner数据为例子 store: 我们在使用异步的时候理应是要使用中间件的,但是configureStore 已经自动集成了 redux-thunk,注意action里面要返回函数 import { configureS…...
云原生安全实战:API网关Kong的鉴权与限流详解
🔥「炎码工坊」技术弹药已装填! 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 一、基础概念 1. API网关(API Gateway) API网关是微服务架构中的核心组件,负责统一管理所有API的流量入口。它像一座…...
Python+ZeroMQ实战:智能车辆状态监控与模拟模式自动切换
目录 关键点 技术实现1 技术实现2 摘要: 本文将介绍如何利用Python和ZeroMQ消息队列构建一个智能车辆状态监控系统。系统能够根据时间策略自动切换驾驶模式(自动驾驶、人工驾驶、远程驾驶、主动安全),并通过实时消息推送更新车…...
Python 高效图像帧提取与视频编码:实战指南
Python 高效图像帧提取与视频编码:实战指南 在音视频处理领域,图像帧提取与视频编码是基础但极具挑战性的任务。Python 结合强大的第三方库(如 OpenCV、FFmpeg、PyAV),可以高效处理视频流,实现快速帧提取、压缩编码等关键功能。本文将深入介绍如何优化这些流程,提高处理…...
WEB3全栈开发——面试专业技能点P7前端与链上集成
一、Next.js技术栈 ✅ 概念介绍 Next.js 是一个基于 React 的 服务端渲染(SSR)与静态网站生成(SSG) 框架,由 Vercel 开发。它简化了构建生产级 React 应用的过程,并内置了很多特性: ✅ 文件系…...
OCR MLLM Evaluation
为什么需要评测体系?——背景与矛盾 能干的事: 看清楚发票、身份证上的字(准确率>90%),速度飞快(眨眼间完成)。干不了的事: 碰到复杂表格(合并单元…...
【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解
一、前言 在HarmonyOS 5的应用开发模型中,featureAbility是旧版FA模型(Feature Ability)的用法,Stage模型已采用全新的应用架构,推荐使用组件化的上下文获取方式,而非依赖featureAbility。 FA大概是API7之…...
