YOLOv5 分类模型 预处理 OpenCV实现
YOLOv5 分类模型 预处理 OpenCV实现
flyfish
YOLOv5 分类模型 预处理 PIL 实现
YOLOv5 分类模型 OpenCV和PIL两者实现预处理的差异
YOLOv5 分类模型 数据集加载 1 样本处理
YOLOv5 分类模型 数据集加载 2 切片处理
YOLOv5 分类模型 数据集加载 3 自定义类别
YOLOv5 分类模型的预处理(1) Resize 和 CenterCrop
YOLOv5 分类模型的预处理(2)ToTensor 和 Normalize
YOLOv5 分类模型 Top 1和Top 5 指标说明
YOLOv5 分类模型 Top 1和Top 5 指标实现
判断图像是否是np.ndarray类型和维度
OpenCV读取一张图像时,类型类型就是<class 'numpy.ndarray'>,这里判断图像是否是np.ndarray类型
dim是dimension维度的缩写,shape属性的长度也是它的ndim
灰度图的shape为HW,二个维度
RGB图的shape为HWC,三个维度

def _is_numpy_image(img):return isinstance(img, np.ndarray) and (img.ndim in {2, 3})
实现ToTensor和Normalize
def totensor_normalize(img):print("preprocess:",img.shape)images = (img/255-mean)/stdimages = images.transpose((2, 0, 1))# HWC to CHWimages = np.ascontiguousarray(images)return images
实现Resize
插值可以是以下参数
# 'nearest': cv2.INTER_NEAREST,
# 'bilinear': cv2.INTER_LINEAR,
# 'area': cv2.INTER_AREA,
# 'bicubic': cv2.INTER_CUBIC,
# 'lanczos': cv2.INTER_LANCZOS4
def resize(img, size, interpolation=cv2.INTER_LINEAR):r"""Resize the input numpy ndarray to the given size.Args:img (numpy ndarray): Image to be resized.size: like pytroch about size interpretation flyfish.interpolation (int, optional): Desired interpolation. Default is``cv2.INTER_LINEAR`` Returns:numpy Image: Resized image.like opencv"""if not _is_numpy_image(img):raise TypeError('img should be numpy image. Got {}'.format(type(img)))if not (isinstance(size, int) or (isinstance(size, collections.abc.Iterable) and len(size) == 2)):raise TypeError('Got inappropriate size arg: {}'.format(size))h, w = img.shape[0], img.shape[1]if isinstance(size, int):if (w <= h and w == size) or (h <= w and h == size):return imgif w < h:ow = sizeoh = int(size * h / w)else:oh = sizeow = int(size * w / h)else:ow, oh = size[1], size[0]output = cv2.resize(img, dsize=(ow, oh), interpolation=interpolation)if img.shape[2] == 1:return output[:, :, np.newaxis]else:return output
实现CenterCrop
def crop(img, i, j, h, w):"""Crop the given Image flyfish.Args:img (numpy ndarray): Image to be cropped.i: Upper pixel coordinate.j: Left pixel coordinate.h: Height of the cropped image.w: Width of the cropped image.Returns:numpy ndarray: Cropped image."""if not _is_numpy_image(img):raise TypeError('img should be numpy image. Got {}'.format(type(img)))return img[i:i + h, j:j + w, :]def center_crop(img, output_size):if isinstance(output_size, numbers.Number):output_size = (int(output_size), int(output_size))h, w = img.shape[0:2]th, tw = output_sizei = int(round((h - th) / 2.))j = int(round((w - tw) / 2.))return crop(img, i, j, th, tw)
完整
import time
from models.common import DetectMultiBackend
import os
import os.path
from typing import Any, Callable, cast, Dict, List, Optional, Tuple, Union
import cv2
import numpy as np
import collections
import torch
import numbersclasses_name=['n02086240', 'n02087394', 'n02088364', 'n02089973', 'n02093754', 'n02096294', 'n02099601', 'n02105641', 'n02111889', 'n02115641']mean=[0.485, 0.456, 0.406]
std=[0.229, 0.224, 0.225]def _is_numpy_image(img):return isinstance(img, np.ndarray) and (img.ndim in {2, 3})def totensor_normalize(img):print("preprocess:",img.shape)images = (img/255-mean)/stdimages = images.transpose((2, 0, 1))# HWC to CHWimages = np.ascontiguousarray(images)return imagesdef resize(img, size, interpolation=cv2.INTER_LINEAR):r"""Resize the input numpy ndarray to the given size.Args:img (numpy ndarray): Image to be resized.size: like pytroch about size interpretation flyfish.interpolation (int, optional): Desired interpolation. Default is``cv2.INTER_LINEAR`` Returns:numpy Image: Resized image.like opencv"""if not _is_numpy_image(img):raise TypeError('img should be numpy image. Got {}'.format(type(img)))if not (isinstance(size, int) or (isinstance(size, collections.abc.Iterable) and len(size) == 2)):raise TypeError('Got inappropriate size arg: {}'.format(size))h, w = img.shape[0], img.shape[1]if isinstance(size, int):if (w <= h and w == size) or (h <= w and h == size):return imgif w < h:ow = sizeoh = int(size * h / w)else:oh = sizeow = int(size * w / h)else:ow, oh = size[1], size[0]output = cv2.resize(img, dsize=(ow, oh), interpolation=interpolation)if img.shape[2] == 1:return output[:, :, np.newaxis]else:return outputdef crop(img, i, j, h, w):"""Crop the given Image flyfish.Args:img (numpy ndarray): Image to be cropped.i: Upper pixel coordinate.j: Left pixel coordinate.h: Height of the cropped image.w: Width of the cropped image.Returns:numpy ndarray: Cropped image."""if not _is_numpy_image(img):raise TypeError('img should be numpy image. Got {}'.format(type(img)))return img[i:i + h, j:j + w, :]def center_crop(img, output_size):if isinstance(output_size, numbers.Number):output_size = (int(output_size), int(output_size))h, w = img.shape[0:2]th, tw = output_sizei = int(round((h - th) / 2.))j = int(round((w - tw) / 2.))return crop(img, i, j, th, tw)class DatasetFolder:def __init__(self,root: str,) -> None:self.root = rootif classes_name is None or not classes_name:classes, class_to_idx = self.find_classes(self.root)print("not classes_name")else:classes = classes_nameclass_to_idx ={cls_name: i for i, cls_name in enumerate(classes)}print("is classes_name")print("classes:",classes)print("class_to_idx:",class_to_idx)samples = self.make_dataset(self.root, class_to_idx)self.classes = classesself.class_to_idx = class_to_idxself.samples = samplesself.targets = [s[1] for s in samples]@staticmethoddef make_dataset(directory: str,class_to_idx: Optional[Dict[str, int]] = None,) -> List[Tuple[str, int]]:directory = os.path.expanduser(directory)if class_to_idx is None:_, class_to_idx = self.find_classes(directory)elif not class_to_idx:raise ValueError("'class_to_index' must have at least one entry to collect any samples.")instances = []available_classes = set()for target_class in sorted(class_to_idx.keys()):class_index = class_to_idx[target_class]target_dir = os.path.join(directory, target_class)if not os.path.isdir(target_dir):continuefor root, _, fnames in sorted(os.walk(target_dir, followlinks=True)):for fname in sorted(fnames):path = os.path.join(root, fname)if 1: # 验证:item = path, class_indexinstances.append(item)if target_class not in available_classes:available_classes.add(target_class)empty_classes = set(class_to_idx.keys()) - available_classesif empty_classes:msg = f"Found no valid file for the classes {', '.join(sorted(empty_classes))}. "return instancesdef find_classes(self, directory: str) -> Tuple[List[str], Dict[str, int]]:classes = sorted(entry.name for entry in os.scandir(directory) if entry.is_dir())if not classes:raise FileNotFoundError(f"Couldn't find any class folder in {directory}.")class_to_idx = {cls_name: i for i, cls_name in enumerate(classes)}return classes, class_to_idxdef __getitem__(self, index: int) -> Tuple[Any, Any]:path, target = self.samples[index]sample = self.loader(path)return sample, targetdef __len__(self) -> int:return len(self.samples)def loader(self, path):print("path:", path)img = cv2.imread(path) # BGR HWCimg=cv2.cvtColor(img,cv2.COLOR_BGR2RGB)#RGBprint("type:",type(img))return imgdef time_sync():return time.time()dataset = DatasetFolder(root="/media/flyfish/datasets/imagewoof/val")
weights = "/home/classes.pt"
device = "cpu"
model = DetectMultiBackend(weights, device=device, dnn=False, fp16=False)
model.eval()def classify_transforms(img):img=resize(img,224)img=center_crop(img,224)img=totensor_normalize(img)return img;pred, targets, loss, dt = [], [], 0, [0.0, 0.0, 0.0]
# current batch size =1
for i, (images, labels) in enumerate(dataset):print("i:", i)print(images.shape, labels)im = classify_transforms(images)images=torch.from_numpy(im).to(torch.float32) # numpy to tensorimages = images.unsqueeze(0).to("cpu")print(images.shape)t1 = time_sync()images = images.to(device, non_blocking=True)t2 = time_sync()# dt[0] += t2 - t1y = model(images)y=y.numpy()print("y:", y)t3 = time_sync()# dt[1] += t3 - t2tmp1=y.argsort()[:,::-1][:, :5]print("tmp1:", tmp1)pred.append(tmp1)print("labels:", labels)targets.append(labels)print("for pred:", pred) # listprint("for targets:", targets) # list# dt[2] += time_sync() - t3pred, targets = np.concatenate(pred), np.array(targets)
print("pred:", pred)
print("pred:", pred.shape)
print("targets:", targets)
print("targets:", targets.shape)
correct = ((targets[:, None] == pred)).astype(np.float32)
print("correct:", correct.shape)
print("correct:", correct)
acc = np.stack((correct[:, 0], correct.max(1)), axis=1) # (top1, top5) accuracy
print("acc:", acc.shape)
print("acc:", acc)
top = acc.mean(0)
print("top1:", top[0])
print("top5:", top[1])
结果
pred: [[0 3 6 2 1][0 7 2 9 3][0 5 6 2 9]...[9 8 7 6 1][9 3 6 7 0][9 5 0 2 7]]
pred: (3929, 5)
targets: [0 0 0 ... 9 9 9]
targets: (3929,)
correct: (3929, 5)
correct: [[ 1 0 0 0 0][ 1 0 0 0 0][ 1 0 0 0 0]...[ 1 0 0 0 0][ 1 0 0 0 0][ 1 0 0 0 0]]
acc: (3929, 2)
acc: [[ 1 1][ 1 1][ 1 1]...[ 1 1][ 1 1][ 1 1]]
top1: 0.86230594
top5: 0.98167473
相关文章:
YOLOv5 分类模型 预处理 OpenCV实现
YOLOv5 分类模型 预处理 OpenCV实现 flyfish YOLOv5 分类模型 预处理 PIL 实现 YOLOv5 分类模型 OpenCV和PIL两者实现预处理的差异 YOLOv5 分类模型 数据集加载 1 样本处理 YOLOv5 分类模型 数据集加载 2 切片处理 YOLOv5 分类模型 数据集加载 3 自定义类别 YOLOv5 分类模型…...
在arm 64 环境下使用halcon算法
背景: halcon,机器视觉领域神一样得存在,在windows上,应用得特别多, 但是arm环境下使用得很少。那如何在arm下使用halcon呢。按照官方说明,arm下只提供了运行时环境,并且需要使用价值一万多人民…...
H5(uniapp)中使用echarts
1,安装echarts npm install echarts 2,具体页面 <template><view class"container notice-list"><view><view class"aa" id"main" style"width: 500px; height: 400px;"></view></v…...
QLineEdit设置掩码Ip
目的 有时,用单行编辑框想限制输入,但QLineEdit提供的setInputMask()方法用来限制输入字符或者数字还可以,但要做约束,得和验证器结合。 setInputMash()描述 此属性包含验证输入掩码 如果没有设置掩码,inputMask() …...
开源语音大语言模型来了!阿里基于Qwen-Chat提出Qwen-Audio!
论文链接:https://arxiv.org/pdf/2311.07919.pdf 开源代码:https://github.com/QwenLM/Qwen-Audio 引言 大型语言模型(LLMs)由于其良好的知识保留能力、复杂的推理和解决问题能力,在通用人工智能(AGI&am…...
缓存雪崩、击穿、穿透及解决方案_保证缓存和数据库一致性
文章目录 缓存雪崩、击穿、穿透1.缓存雪崩造成缓存雪崩解决缓存雪崩 2. 缓存击穿造成缓存击穿解决缓存击穿 3.缓存穿透造成缓存穿透解决缓存穿透 更新数据时,如何保证数据库和缓存的一致性?1. 先更新数据库?先更新缓存?解决方案 2…...
仿 美图 / 饿了么,店铺详情页功能
前言 UI有所不同,但功能差不多,商品添加购物车功能 正在写,写完会提交仓库。 效果图一:左右RecyclerView 联动 效果图二:通过点击 向上偏移至最大值 效果图三:通过点击 或 拖动 展开收缩公告 效果图四&…...
Redis Cluster主从模式详解
在软件的架构中,主从模式(Master-Slave)是使用较多的一种架构。主(Master)和从(Slave)分别部署在不同的服务器上,当主节点服务器写入数据时,同时也会将数据同步至从节点服…...
Linux技能篇-非交互式修改密码
今天的文章没有格式,简单分享一个小技能,就是标题所说–非交互式修改密码。 一、普通方式修改用户密码 最普通的修改密码的命令就是passwd命令 [rootlocalhost ~]# passwd root Changing password for user root. New password: Retype new password:…...
记一次docker服务启动失败解决过程
环境:centos 7.6 报错:start request repeated too quickly for docker.service 由于服务器修复了内核漏洞,需要重启,没想到重启后,docker启动失败了 查看状态 systemctl status docker如下图 里面有一行提示&…...
npm ERR! node-sass@4.13.0 postinstall: `node scripts/build.js`
npm ERR! node-sass4.13.0 postinstall: node scripts/build.js npm config set sass_binary_sitehttps://npm.taobao.org/mirrors/node-sass npm install npm run dev Microsoft Windows [版本 10.0.19045.2965] (c) Microsoft Corporation。保留所有权利。C:\Users\Administr…...
Java定时任务 ScheduledThreadPoolExecutor
ScheduledThreadPoolExecutor 的创建 ScheduledThreadPoolExecutor executorService new ScheduledThreadPoolExecutor(1, // 核心线程数new BasicThreadFactory.Builder().namingPattern("example-schedule-pool-%d") // 线程命名规则.daemon(true) // 设置线程为…...
Android Studio 显示build variants工具栏
工具栏: 如下图所示 依次点击View-->ToolWindows-->Build Variants。 在此记个笔记...
c++八股文记录
八股文 1.类和结构体的区别 在 C 中,类(class)和结构体(struct)在语法上几乎是相同的,唯一的区别是默认的访问权限。在结构体中,默认的访问权限是公有的(public)&#x…...
C++ 指针进阶:动态分配内存
工作原理 malloc 是 stdlib.h 库中的函数,声明为 void *__cdecl malloc(size_t _Size); 原理: malloc 函数沿空闲链表(位于内存 堆空间 中)申请一块满足需求的内存块,将所需大小的内存块分配给用户剩下的返回到链表上; 并返回指向该内存区的首地址的指针,意该指针的类型…...
点大商城V2.5.3分包小程序端+小程序上传提示限制分包制作教程
这几天很多播播资源会员反馈点大商城V2.5.3小程序端上传时提示大小超限,官方默认单个包都不能超过2M,总分包不能超20M。如下图提示超了93KB,如果出现超的不多情况下可采用手动删除一些images目录下不使用的图片,只要删除超过100KB…...
AUTOSAR汽车电子嵌入式编程精讲300篇-基于机器学习的车载 CAN 网络入侵检测
目录 前言 国内外研究现状 CAN 总线概述及其安全分析 2.1 CAN 总线相关概念 2.1.1...
Jetson orin(Ubuntu20.04)不接显示器无法输出VNC图像解决办法以及vnc安装记录
sudo apt install vino 好像Jetpack 5.0中已经自带了。。 配置VNC server: gsettings set org.gnome.Vino prompt-enabled false gsettings set org.gnome.Vino require-encryption false 编辑org.gnome,增加一个“enabled key”的参数: cd /usr/share/glib-2…...
LeetCode Hot100 108.将有序数组转为二叉搜索树
题目: 给你一个整数数组 nums ,其中元素已经按 升序 排列,请你将其转换为一棵 高度平衡 二叉搜索树。 高度平衡 二叉树是一棵满足「每个节点的左右两个子树的高度差的绝对值不超过 1 」的二叉树。 方法: class Solution {public…...
微机原理_3
一、单项选择题(本大题共15小题,每小题3分,共45分。在每小题给出的四个备选项中,选出一个正确的答案,请将选定的答案填涂在答题纸的相应位置上。) 在 8086 微机系统中,完成对指令译码操作功能的部件是()。 A. EU B. BIU C. SRAM D. DRAM 使计算机执行某…...
conda相比python好处
Conda 作为 Python 的环境和包管理工具,相比原生 Python 生态(如 pip 虚拟环境)有许多独特优势,尤其在多项目管理、依赖处理和跨平台兼容性等方面表现更优。以下是 Conda 的核心好处: 一、一站式环境管理:…...
stm32G473的flash模式是单bank还是双bank?
今天突然有人stm32G473的flash模式是单bank还是双bank?由于时间太久,我真忘记了。搜搜发现,还真有人和我一样。见下面的链接:https://shequ.stmicroelectronics.cn/forum.php?modviewthread&tid644563 根据STM32G4系列参考手…...
【SQL学习笔记1】增删改查+多表连接全解析(内附SQL免费在线练习工具)
可以使用Sqliteviz这个网站免费编写sql语句,它能够让用户直接在浏览器内练习SQL的语法,不需要安装任何软件。 链接如下: sqliteviz 注意: 在转写SQL语法时,关键字之间有一个特定的顺序,这个顺序会影响到…...
Spring Boot面试题精选汇总
🤟致敬读者 🟩感谢阅读🟦笑口常开🟪生日快乐⬛早点睡觉 📘博主相关 🟧博主信息🟨博客首页🟫专栏推荐🟥活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...
ElasticSearch搜索引擎之倒排索引及其底层算法
文章目录 一、搜索引擎1、什么是搜索引擎?2、搜索引擎的分类3、常用的搜索引擎4、搜索引擎的特点二、倒排索引1、简介2、为什么倒排索引不用B+树1.创建时间长,文件大。2.其次,树深,IO次数可怕。3.索引可能会失效。4.精准度差。三. 倒排索引四、算法1、Term Index的算法2、 …...
【RockeMQ】第2节|RocketMQ快速实战以及核⼼概念详解(二)
升级Dledger高可用集群 一、主从架构的不足与Dledger的定位 主从架构缺陷 数据备份依赖Slave节点,但无自动故障转移能力,Master宕机后需人工切换,期间消息可能无法读取。Slave仅存储数据,无法主动升级为Master响应请求ÿ…...
在WSL2的Ubuntu镜像中安装Docker
Docker官网链接: https://docs.docker.com/engine/install/ubuntu/ 1、运行以下命令卸载所有冲突的软件包: for pkg in docker.io docker-doc docker-compose docker-compose-v2 podman-docker containerd runc; do sudo apt-get remove $pkg; done2、设置Docker…...
第 86 场周赛:矩阵中的幻方、钥匙和房间、将数组拆分成斐波那契序列、猜猜这个单词
Q1、[中等] 矩阵中的幻方 1、题目描述 3 x 3 的幻方是一个填充有 从 1 到 9 的不同数字的 3 x 3 矩阵,其中每行,每列以及两条对角线上的各数之和都相等。 给定一个由整数组成的row x col 的 grid,其中有多少个 3 3 的 “幻方” 子矩阵&am…...
Xen Server服务器释放磁盘空间
disk.sh #!/bin/bashcd /run/sr-mount/e54f0646-ae11-0457-b64f-eba4673b824c # 全部虚拟机物理磁盘文件存储 a$(ls -l | awk {print $NF} | cut -d. -f1) # 使用中的虚拟机物理磁盘文件 b$(xe vm-disk-list --multiple | grep uuid | awk {print $NF})printf "%s\n"…...
vulnyx Blogger writeup
信息收集 arp-scan nmap 获取userFlag 上web看看 一个默认的页面,gobuster扫一下目录 可以看到扫出的目录中得到了一个有价值的目录/wordpress,说明目标所使用的cms是wordpress,访问http://192.168.43.213/wordpress/然后查看源码能看到 这…...
