当前位置: 首页 > news >正文

【OpenCV实现图像:使用OpenCV生成拼图效果】

文章目录

    • 概要
    • 通用配置
    • 不考虑间隔代码实现
    • 考虑间隔代码实现
    • 小结

概要

概要:

拼图效果是一种将图像切割为相邻正方形并重新排列的艺术效果。在生成拼图效果时,可以考虑不同的模式,包括是否考虑间隔和如何处理不能整除的部分。

不考虑间隔,忽略不能整除部分:
相邻正方形之间没有间隔,同时高度不能整除的部分直接被忽略。
示例图中展示了正方形紧密排列,没有任何间隔,不整除的部分被舍弃。
在这里插入图片描述

不考虑间隔,对不能整除部分进行空白填充:
相邻正方形之间没有间隔,同时对高度不能整除的部分进行白色填充。
示例图中呈现了正方形之间无缝连接,高度不能整除的部分填充为白色。
在这里插入图片描述

考虑间隔,忽略不能整除部分:
相邻正方形之间存在间隙,间隔距离为3像素,同时高度不能整除的部分直接被忽略。
示例图中显示了正方形之间的间隔,不整除的部分被舍弃。
在这里插入图片描述

考虑间隔,对不能整除部分进行空白填充:
相邻正方形之间存在间隙,间隔距离为3像素,同时对高度不能整除的部分进行白色填充。
示例图中演示了正方形之间的间隔,高度不能整除的部分填充为白色。
在这里插入图片描述

通用配置

为了统一上述代码,我们设置通用配置项如下:

config = {"cell_num":7,"whether_crop_image_height": True,"whether_with_gap": True,"gap_width":3
}

上述配置中,各项含义如下:

cell_num: 表示每行划分格子个数

whether_crop_image_height: 表示是否对高度不能整除部分进行空白填充

whether_with_gap: 表示相邻正方形之间是否存在间隔

gap_width: 表示相邻正方形间间隔的大小

不考虑间隔代码实现

1). 获取每行格子数目和输入图像信息

w_count = config['cell_num']
src_height = img.shape[0]
src_width = img.shape[1]

2).计算每个格子的长度以及结果图像的宽度

sub_length = int(src_width / w_count)
new_width = sub_length * w_count

3).根据是否需要对高度进行空白填充,计算结果图像的高度

if config['whether_crop_image_height']:h_count = int(src_height / sub_length)
else:h_count = math.ceil(src_height / sub_length)
new_height = sub_length * h_count

4).对结果图进行赋值

img_t = np.zeros(shape=(new_height,new_width,3),dtype=np.uint8) + 255
if config['whether_crop_image_height']:img_t = img[:new_height,:new_width,:]
else:img_t[:src_height, :new_width, :] = img[:src_height, :new_width, :]

5).画格子

 for x_i in range(1, w_count):cv2.line(img_t,(x_i*sub_length,0),(x_i*sub_length,new_height-1),color=(205,205,74),thickness=1)
for y_i in range(1, h_count):cv2.line(img_t,(0,y_i*sub_length),(new_width-1,y_i*sub_length), color=(205,205,74), thickness=1)

完整代码:

import cv2
import numpy as np
import math# 通用配置
config = {"cell_num": 7,"whether_crop_image_height": True,"whether_with_gap": False,"gap_width": 0
}# 读取图像
img = cv2.imread("img.png")# 获取每行格子数目和输入图像信息
w_count = config['cell_num']
src_height = img.shape[0]
src_width = img.shape[1]# 计算每个格子的长度以及结果图像的宽度
sub_length = int(src_width / w_count)
new_width = sub_length * w_count# 根据是否需要对高度进行空白填充,计算结果图像的高度
if config['whether_crop_image_height']:h_count = int(src_height / sub_length)
else:h_count = math.ceil(src_height / sub_length)
new_height = sub_length * h_count# 对结果图进行赋值
img_t = np.zeros(shape=(new_height, new_width, 3), dtype=np.uint8) + 255
if config['whether_crop_image_height']:img_t = img[:new_height, :new_width, :]
else:img_t[:src_height, :new_width, :] = img[:src_height, :new_width, :]# 画格子
for x_i in range(1, w_count):cv2.line(img_t, (x_i * sub_length, 0), (x_i * sub_length, new_height-1), color=(205, 205, 74), thickness=1)
for y_i in range(1, h_count):cv2.line(img_t, (0, y_i * sub_length), (new_width-1, y_i * sub_length), color=(205, 205, 74), thickness=1)# 展示生成的拼图效果
cv2.imshow('Mosaic Effect', img_t)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述
带填充的结果:

import cv2
import numpy as np
import math# 通用配置
config = {"cell_num": 7,"whether_crop_image_height": True,"whether_with_gap": False,"gap_width": 0
}# 读取图像
img = cv2.imread("img.png")# 获取每行格子数目和输入图像信息
w_count = config['cell_num']
src_height = img.shape[0]
src_width = img.shape[1]# 计算每个格子的长度、间隔长度以及结果图像的宽度
sub_length = int(src_width / w_count)
gap_length = int(config["gap_width"])
new_width = sub_length * w_count + gap_length * (w_count - 1)# 根据是否需要对高度进行空白填充,计算结果图像的高度
if config['whether_crop_image_height']:h_count = int((src_height + gap_length) / (sub_length + gap_length))
else:h_count = math.ceil((src_height + gap_length) / (sub_length + gap_length))
new_height = sub_length * h_count + gap_length * (h_count - 1)# 对结果图进行赋值
img_t = np.zeros(shape=(new_height, new_width, 3), dtype=np.uint8) + 255
if config['whether_crop_image_height']:for i in range(h_count):for j in range(w_count):begin_x = sub_length * jbegin_y = sub_length * isrc_x = gap_length * j + begin_xsrc_y = gap_length * i + begin_yimg_t[src_y:src_y + sub_length, src_x:src_x + sub_length, :] = img[begin_y:begin_y + sub_length, begin_x:begin_x + sub_length, :]
else:for i in range(h_count):for j in range(w_count):begin_x = sub_length * jbegin_y = sub_length * isrc_x = gap_length * j + begin_xsrc_y = gap_length * i + begin_yif i < h_count - 1:img_t[src_y:src_y + sub_length, src_x:src_x + sub_length, :] = img[begin_y:begin_y + sub_length, begin_x:begin_x + sub_length, :]else:diff_height = src_height - sub_length * (h_count - 1)img_t[src_y:src_y + diff_height, src_x:src_x + sub_length, :] = img[begin_y:begin_y + diff_height, begin_x:begin_x + sub_length, :]# 展示生成的拼图效果
cv2.imshow('Mosaic Effect with Fill', img_t)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

不考虑间隔,带填充的情况:
img_t = np.zeros(shape=(new_height, new_width, 3), dtype=np.uint8) + 255
if config['whether_crop_image_height']:img_t = img[:new_height, :new_width, :]
else:img_t[:src_height, :new_width, :] = img[:src_height, :new_width, :]
考虑间隔,带填充的情况:
img_t = np.zeros(shape=(new_height, new_width, 3), dtype=np.uint8) + 255
if config['whether_crop_image_height']:for i in range(h_count):for j in range(w_count):begin_x = sub_length * jbegin_y = sub_length * isrc_x = gap_length * j + begin_xsrc_y = gap_length * i + begin_yimg_t[src_y:src_y + sub_length, src_x:src_x + sub_length, :] = img[begin_y:begin_y + sub_length, begin_x:begin_x + sub_length, :]
else:for i in range(h_count):for j in range(w_count):begin_x = sub_length * jbegin_y = sub_length * isrc_x = gap_length * j + begin_xsrc_y = gap_length * i + begin_yif i < h_count - 1:img_t[src_y:src_y + sub_length, src_x:src_x + sub_length, :] = img[begin_y:begin_y + sub_length, begin_x:begin_x + sub_length, :]else:diff_height = src_height - sub_length * (h_count - 1)img_t[src_y:src_y + diff_height, src_x:src_x + sub_length, :] = img[begin_y:begin_y + diff_height, begin_x:begin_x + sub_length, :]

在带填充的情况下,会对不能整除的高度部分进行空白填充。带填充的拼图效果会更整齐,而不带填充的情况下可能会有一些截断。

考虑间隔代码实现

1). 获取每行格子数目和输入图像信息

w_count = config['cell_num']
src_height = img.shape[0]
src_width = img.shape[1]

2).计算每个格子的长度,间隔长度以及结果图像的宽度

sub_length = int(src_width / w_count)
gap_length = int(config["gap_width"])
new_width = sub_length * w_count + gap_length * (w_count -1)

3).根据是否需要对高度进行空白填充,计算结果图像的高度

if config['whether_crop_image_height']:h_count = int( (src_height + gap_length) / (sub_length+gap_length))
else:h_count = math.ceil((src_height + gap_length) / (sub_length+gap_length))
new_height = sub_length * h_count + gap_length * (h_count-1)

4).对结果图进行赋值

img_t = np.zeros(shape=(new_height,new_width,3),dtype=np.uint8) + 255
if config['whether_crop_image_height']:for i in range(h_count):  for j in range(w_count): begin_x = sub_length * jbegin_y = sub_length * isrc_x = gap_length * j + begin_xsrc_y = gap_length * i + begin_yimg_t[src_y:src_y+sub_length,src_x:src_x + sub_length,:] = img[begin_y:begin_y + sub_length,begin_x:begin_x + sub_length,  :]
else:for i in range(h_count):  for j in range(w_count): begin_x = sub_length * jbegin_y = sub_length * isrc_x = gap_length * j + begin_xsrc_y = gap_length * i + begin_yif i<h_count-1:img_t[src_y:src_y+sub_length,src_x:src_x + sub_length,:] = img[begin_y:begin_y + sub_length,begin_x:begin_x + sub_length,  :]else:diff_height = src_height - sub_length * (h_count-1)img_t[src_y:src_y + diff_height, src_x:src_x + sub_length, :] = img[begin_y:begin_y + diff_height,begin_x:begin_x + sub_length, :]

全部代码

import cv2
import numpy as np
import math# 通用配置
config = {"cell_num": 7,"whether_crop_image_height": True,"whether_with_gap": True,"gap_width": 3
}# 读取图像
img = cv2.imread("img.png")# 获取每行格子数目和输入图像信息
w_count = config['cell_num']
src_height = img.shape[0]
src_width = img.shape[1]# 计算每个格子的长度、间隔长度以及结果图像的宽度
sub_length = int(src_width / w_count)
gap_length = int(config["gap_width"])
new_width = sub_length * w_count + gap_length * (w_count - 1)# 根据是否需要对高度进行空白填充,计算结果图像的高度
if config['whether_crop_image_height']:h_count = int((src_height + gap_length) / (sub_length + gap_length))
else:h_count = math.ceil((src_height + gap_length) / (sub_length + gap_length))
new_height = sub_length * h_count + gap_length * (h_count - 1)# 对结果图进行赋值
img_t = np.zeros(shape=(new_height, new_width, 3), dtype=np.uint8) + 255
if config['whether_crop_image_height']:for i in range(h_count):for j in range(w_count):begin_x = sub_length * jbegin_y = sub_length * isrc_x = gap_length * j + begin_xsrc_y = gap_length * i + begin_yimg_t[src_y:src_y + sub_length, src_x:src_x + sub_length, :] = img[begin_y:begin_y + sub_length, begin_x:begin_x + sub_length, :]
else:for i in range(h_count):for j in range(w_count):begin_x = sub_length * jbegin_y = sub_length * isrc_x = gap_length * j + begin_xsrc_y = gap_length * i + begin_yif i < h_count - 1:img_t[src_y:src_y + sub_length, src_x:src_x + sub_length, :] = img[begin_y:begin_y + sub_length, begin_x:begin_x + sub_length, :]else:diff_height = src_height - sub_length * (h_count - 1)img_t[src_y:src_y + diff_height, src_x:src_x + sub_length, :] = img[begin_y:begin_y + diff_height, begin_x:begin_x + sub_length, :]# 绘制间隔
if config['whether_with_gap']:for i in range(h_count):for j in range(w_count - 1):begin_x = sub_length * (j + 1) + gap_length * jbegin_y = sub_length * i + gap_length * icv2.line(img_t, (begin_x, begin_y), (begin_x, begin_y + sub_length), color=(205, 205, 74), thickness=1)# 展示生成的带填充和间隔的拼图效果
cv2.imshow('Mosaic Effect with Fill and Gap', img_t)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这里插入图片描述

小结

通过使用OpenCV库和Python编程语言,实现了图像拼图效果的生成。

拼图效果生成: 根据用户的需求,实现了两种不同的拼图效果生成方式。
一种是不考虑间隔,可以选择是否对高度不能整除的部分进行空白填充;另一种是考虑间隔,可以选择相邻正方形之间是否存在间隔,以及间隔的大小,同样可以选择是否对高度不能整除的部分进行空白填充。
通用配置: 引入了通用配置项,用户可以通过修改配置来调整拼图的格子数、是否裁剪高度、是否考虑间隔以及间隔的宽度等参数。
代码优化: 封装了一些功能函数,使代码更加模块化和可读性更强。

相关文章:

【OpenCV实现图像:使用OpenCV生成拼图效果】

文章目录 概要通用配置不考虑间隔代码实现考虑间隔代码实现小结 概要 概要&#xff1a; 拼图效果是一种将图像切割为相邻正方形并重新排列的艺术效果。在生成拼图效果时&#xff0c;可以考虑不同的模式&#xff0c;包括是否考虑间隔和如何处理不能整除的部分。 不考虑间隔&a…...

【AOSP】生成签名文件release key,通过Android源码对apk进行签名

简介 现在apk都需要签名&#xff0c;Flutter做的项目官方规定编译apk必须签名。 签名的好处&#xff1a; 应用来源验证&#xff1a; 应用签名允许Android系统验证应用的来源。每个应用都使用开发者的私钥进行签名&#xff0c;而应用的签名信息包含在应用的APK文件中。当用户尝…...

深度学习之基于Tensorflow银行卡号码识别系统

欢迎大家点赞、收藏、关注、评论啦 &#xff0c;由于篇幅有限&#xff0c;只展示了部分核心代码。 文章目录 一项目简介银行卡号码识别的步骤TensorFlow的优势 二、功能三、系统四. 总结 一项目简介 # 深度学习基于TensorFlow的银行卡号码识别介绍 深度学习在图像识别领域取得…...

第95步 深度学习图像目标检测:Faster R-CNN建模

基于WIN10的64位系统演示 一、写在前面 本期开始&#xff0c;我们学习深度学习图像目标检测系列。 深度学习图像目标检测是计算机视觉领域的一个重要子领域&#xff0c;它的核心目标是利用深度学习模型来识别并定位图像中的特定目标。这些目标可以是物体、人、动物或其他可识…...

设计模式—里氏替换原则

1.概念 里氏代换原则(Liskov Substitution Principle LSP)面向对象设计的基本原则之一。 里氏代换原则中说&#xff0c;任何基类可以出现的地方&#xff0c;子类一定可以出现。 LSP是继承复用的基石&#xff0c;只有当衍生类可以替换掉基类&#xff0c;软件单位的功能不受到影…...

PyTorch包

进入PyTorch的官网&#xff1a; pytorch GitHub 点击GitHub&#xff1a; 进入PyTorch的主目录&#xff1a; 进入Vision reference&#xff1a; detection&#xff1a; 这就是我们在训练过程中会使用到的文件了&#xff1a;...

22、什么是中间件和权限拦截中间件实操

新建中间件 middleware\auth.js // 定义权限判断中间件&#xff0c;中间件的第一个参数是context export default ({store, redirect}) > {console.log("中间件被调用")// if (!store || !store.state.userinfo) {// redirect("/")// } }页面使用…...

vue.config.js

proxy代理 proxy选项用于配置开发服务器的代理。下面是proxy的全部属性&#xff1a; 1. target (String | Object | Function): 指定要代理的目标主机的URL。可以是一个字符串&#xff0c;也可以是一个对象或函数&#xff0c;用于动态返回目标URL。 2. forward (Boolean): 控…...

80C51单片机----数据传送类指令

目录 一.一般传送指令&#xff0c;即mov指令 1.16位传送&#xff08;仅1条&#xff09; 2.8位传送 &#xff08;1&#xff09;目的字节为A&#xff08;累加器&#xff09; &#xff08;2&#xff09;目的字节为Rn(工作寄存器) &#xff08;3&#xff09;目的字节为direct…...

【Golang】使用泛型对数组进行去重

背景&#xff1a; 要求写一个方法&#xff0c;返回去重后的数组。数组的类型可能是int64&#xff0c;也可能是string&#xff0c;或是其他类型。 如果区分类型的话&#xff0c;每增加一个新的类型都需要重新写一个方法。 示例代码&#xff1a; //对int64数组进行去重 func DeD…...

Ps:画笔工具的基本操作

画笔工具 Brush Tool是 Ps 中最常用的工具&#xff0c;广泛地用于绘画与修饰工作。 虽然多数操作可在画笔工具的工具选项栏中选择执行&#xff0c;但是如果能记住相应的快捷键可大大提高工作效率。 熟练掌握画笔工具的操作对于使用其他工具也非常有益&#xff0c;因为 Ps 中许多…...

【Apache Doris】一键实现万表MySQL整库同步 | 快速体验

【Apache Doris】一键实现万表MySQL整库同步 | 快速体验&#xff09; 一、 环境信息1.1 硬件信息1.2 软件信息 二、 流程介绍三、 前提概要3.1 安装部署3.2 JAR包准备3.2.1 数据源3.2.2 目标源 3.3 脚本模版 四、快速体验五、常见问题5.1 Mysql通信异常5.2 MySQL无Key同步异常5…...

35.逻辑运算符

目录 一.什么是逻辑运算符 二.C语言中的逻辑运算符 三.逻辑表达式 三.视频教程 一.什么是逻辑运算符 同时对俩个或者俩个以上的表达式进行判断的运算符叫做逻辑运算符。 举例&#xff1a;比如去网吧上网&#xff0c;只有年满十八周岁并且带身份证才可以上网。在C语言中如果…...

ASP.NET Core 启用CORS

浏览器的安全阻止一个域的本地页面请求另外不同域的本地页面&#xff0c;这个限制叫同源策略&#xff0c;这个安全特性用来阻止恶意站点从别的网站读取数据 例如假如我有一个页面叫A.html https://foo.example/A.html 现在页面A.html有一个ajax代码尝试读取B.html的HTML的源…...

io.lettuce.core.RedisCommandExecutionException

io.lettuce.core.RedisCommandExecutionException: ERR invalid password ERR invalid password-CSDN博客 io.lettuce.core.RedisCommandExecutionException /** Copyright 2011-2022 the original author or authors.** Licensed under the Apache License, Version 2.0 (the…...

vue3 导出数据为 excel 文件

文章目录 安装插件封装组件 -- Export2Excel.js多表封装界面使用 -- 数据处理成二维数组更多 菜鸟最近做了一个需求&#xff0c;就是需要上传表单并识别&#xff0c;然后识别出来的内容要可以修改&#xff0c;然后想的就是识别内容变成 form 表单&#xff0c;所以并没有使用 Sp…...

PyQt6简介

锋哥原创的PyQt6视频教程&#xff1a; 2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~_哔哩哔哩_bilibili2024版 PyQt6 Python桌面开发 视频教程(无废话版) 玩命更新中~共计12条视频&#xff0c;包括&#xff1a;2024版 PyQt6 Python桌面开发 视频教程(无废话版…...

某60区块链安全之未初始化的存储指针实战二学习记录

系列文章目录 文章目录 系列文章目录未初始化的存储指针实战二实验目的实验环境实验工具实验原理实验内容实验过程EXP利用 未初始化的存储指针实战二 实验目的 学会使用python3的web3模块 学会分析以太坊智能合约未初始化的存储指针漏洞 找到合约漏洞进行分析并形成利用 实验…...

软件工程第十二周

软件作坊、软件危机、软件过程控制、重型控制、敏捷、DevOps 这些术语概括了软件开发历史和实践中的几个重要概念和阶段。让我们逐一解析它们&#xff1a; 软件作坊&#xff08;Software Craftsmanship&#xff09;&#xff1a;这是软件开发的早期模式&#xff0c;强调个人技能…...

electron 问题记录

23年11月24 electron项目npm install 卡在一个地方不动 原因&#xff1a;主要是 install electron 会卡住 解决方法&#xff1a; # 先解决install electron卡死 npm install -g cnpm --registryhttps://registry.npmmirror.com cnpm install electron# 然后下载其他依赖 np…...

synchronized 学习

学习源&#xff1a; https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖&#xff0c;也要考虑性能问题&#xff08;场景&#xff09; 2.常见面试问题&#xff1a; sync出…...

前端导出带有合并单元格的列表

// 导出async function exportExcel(fileName "共识调整.xlsx") {// 所有数据const exportData await getAllMainData();// 表头内容let fitstTitleList [];const secondTitleList [];allColumns.value.forEach(column > {if (!column.children) {fitstTitleL…...

高防服务器能够抵御哪些网络攻击呢?

高防服务器作为一种有着高度防御能力的服务器&#xff0c;可以帮助网站应对分布式拒绝服务攻击&#xff0c;有效识别和清理一些恶意的网络流量&#xff0c;为用户提供安全且稳定的网络环境&#xff0c;那么&#xff0c;高防服务器一般都可以抵御哪些网络攻击呢&#xff1f;下面…...

算法笔记2

1.字符串拼接最好用StringBuilder&#xff0c;不用String 2.创建List<>类型的数组并创建内存 List arr[] new ArrayList[26]; Arrays.setAll(arr, i -> new ArrayList<>()); 3.去掉首尾空格...

MySQL 知识小结(一)

一、my.cnf配置详解 我们知道安装MySQL有两种方式来安装咱们的MySQL数据库&#xff0c;分别是二进制安装编译数据库或者使用三方yum来进行安装,第三方yum的安装相对于二进制压缩包的安装更快捷&#xff0c;但是文件存放起来数据比较冗余&#xff0c;用二进制能够更好管理咱们M…...

NPOI操作EXCEL文件 ——CAD C# 二次开发

缺点:dll.版本容易加载错误。CAD加载插件时&#xff0c;没有加载所有类库。插件运行过程中用到某个类库&#xff0c;会从CAD的安装目录找&#xff0c;找不到就报错了。 【方案2】让CAD在加载过程中把类库加载到内存 【方案3】是发现缺少了哪个库&#xff0c;就用插件程序加载进…...

uniapp 集成腾讯云 IM 富媒体消息(地理位置/文件)

UniApp 集成腾讯云 IM 富媒体消息全攻略&#xff08;地理位置/文件&#xff09; 一、功能实现原理 腾讯云 IM 通过 消息扩展机制 支持富媒体类型&#xff0c;核心实现方式&#xff1a; 标准消息类型&#xff1a;直接使用 SDK 内置类型&#xff08;文件、图片等&#xff09;自…...

vue3 daterange正则踩坑

<el-form-item label"空置时间" prop"vacantTime"> <el-date-picker v-model"form.vacantTime" type"daterange" start-placeholder"开始日期" end-placeholder"结束日期" clearable :editable"fal…...

阿里云Ubuntu 22.04 64位搭建Flask流程(亲测)

cd /home 进入home盘 安装虚拟环境&#xff1a; 1、安装virtualenv pip install virtualenv 2.创建新的虚拟环境&#xff1a; virtualenv myenv 3、激活虚拟环境&#xff08;激活环境可以在当前环境下安装包&#xff09; source myenv/bin/activate 此时&#xff0c;终端…...

绕过 Xcode?使用 Appuploader和主流工具实现 iOS 上架自动化

iOS 应用的发布流程一直是开发链路中最“苹果味”的环节&#xff1a;强依赖 Xcode、必须使用 macOS、各种证书和描述文件配置……对很多跨平台开发者来说&#xff0c;这一套流程并不友好。 特别是当你的项目主要在 Windows 或 Linux 下开发&#xff08;例如 Flutter、React Na…...