当前位置: 首页 > news >正文

微服务负载均衡器Ribbon

1.什么是Ribbon
目前主流的负载方案分为以下两种:
        集中式负载均衡,在消费者和服务提供方中间使用独立的代理方式进行负载,有硬件的(比如 F5),也有软件的(比如 Nginx)。
        客户端根据自己的请求情况做负载均衡,Ribbon 就属于客户端自己做负载均衡。
        Spring Cloud Ribbon是基于Netflix Ribbon 实现的一套 客户端的负载均衡工具, Ribbon客户端组件提供一系列的完善的配置,如超 时,重试等。通过 Load Balancer 获取到服务提供的所有机器实例,Ribbon会自动基于某种规则(轮询,随机)去调用这些服务。Ribbon也 可以实现我们自己的负载均衡算法。
1.1 客户端的负载均衡
        例如spring cloud中的ribbon,客户端会有一个服务器地址列表,在发送请求前通过负载均衡算法选择一个服务器,然后进行访问,这是 客户端负载均衡;即在客户端就进行负载均衡算法分配。
1.2 服务端的负载均衡
        例如Nginx,通过Nginx进行负载均衡,先发送请求,然后通过负载均衡算法,在多个服务器之间选择一个进行访问;即在服务器端再进 行负载均衡算法分配。
1.3 常见负载均衡算法
        随机,通过随机选择服务进行执行,一般这种方式使用较少;
        轮训,负载均衡默认实现方式,请求来之后排队处理;
        加权轮训,通过对服务器性能的分型,给高配置,低负载的服务器分配更高的权重,均衡各个服务器的压力;
        地址Hash,通过客户端请求的地址的HASH值取模映射进行服务器调度。 ip --->hash
        最小链接数,即使请求均衡了,压力不一定会均衡,最小连接数法就是根据服务器的情况,比如请求积压数等参数,将请求分配到当前压力最小的服务器上。 最小活跃数
2. Nacos使用Ribbon
nacos-discovery依赖了ribbon,可以不用再引入ribbon依赖
2) 添加 @LoadBalanced 注解
@Configurationpublic class RestConfig {@Bean@LoadBalancedpublic RestTemplate restTemplate() {return new RestTemplate();}}
3) 修改controller
@Autowiredprivate RestTemplate restTemplate;@RequestMapping(value = "/findOrderByUserId/{id}")public R findOrderByUserId(@PathVariable("id") Integer id) {// RestTemplate调用//String url = "http://localhost:8020/order/findOrderByUserId/"+id;//模拟ribbon实现//String url = getUri("mall‐order")+"/order/findOrderByUserId/"+id;
// 添加@LoadBalanced
String url = "http://mall‐order/order/findOrderByUserId/"+id;
R result = restTemplate.getForObject(url,R.class);return result;
}
3 Ribbon负载均衡策略
IRule
这是所有负载均衡策略的父接口, 里边的核心方法就是 choose 方法,用来选择一个服务实例
AbstractLoadBalancerRule
AbstractLoadBalancerRule 是一个抽象类,里边主要定义了一个 ILoadBalancer ,这里定义它的目的主要是 辅助负责均衡策略选取合适的服务端实 例。
RandomRule
看名字就知道,这种负载均衡策略就是 随机选择一个服务实例 ,看源码我们知道,在 RandomRule 的无参构造方法中初始化了一个 Random 对象, 然后在它重写的choose 方法又调用了 choose(ILoadBalancer lb, Object key) 这个重载的 choose 方法,在这个重载的 choose 方法中,每次利用 random对象生成一个不大于服务实例总数的随机数,并将该数作为下标所以获取一个服务实例。
RoundRobinRule
RoundRobinRule 这种负载均衡策略叫做线性 轮询负载均衡策略 。这个类的 choose(ILoadBalancer lb, Object key) 函数整体逻辑是这样的:开启 一个计数器count ,在 while 循环中遍历服务清单,获取清单之前先通过 incrementAndGetModulo 方法获取一个下标,这个下标是一个不断自增长 的数先加1 然后和服务清单总数取模之后获取到的(所以这个下标从来不会越界),拿着下标再去服务清单列表中取服务,每次循环计数器都会加
1 ,如果连续 10 次都没有取到服务,则会报一个警告 No available alive servers after 10 tries from load balancer: XXXX
RetryRule (在轮询的基础上进行重试)
看名字就知道这种负载均衡策略带有 重试 功能。首先 RetryRule 中又定义了一个 subRule ,它的实现类是 RoundRobinRule ,然后在 RetryRule
choose(ILoadBalancer lb, Object key) 方法中,每次还是采用 RoundRobinRule 中的 choose 规则来选择一个服务实例,如果选到的实例正常就返
回,如果选择的服务实例为 null 或者已经失效,则在失效时间 deadline 之前不断的进行重试(重试时获取服务的策略还是 RoundRobinRule 中定义的
策略),如果超过了 deadline 还是没取到则会返回一个 null
WeightedResponseTimeRule 权重 —nacos 的NacosRule ,Nacos还扩展了一个自己的基于配置的权重扩展 WeightedResponseTimeRule是 RoundRobinRule 的一个子类,在 WeightedResponseTimeRule 中对 RoundRobinRule 的功能进行了扩展,
WeightedResponseTimeRule 中会根据每一个实例的运行情况来给计算出该实例的一个 权重 ,然后在挑选实例的时候则根据权重进行挑选,这样能 够实现更优的实例调用。WeightedResponseTimeRule 中有一个名叫 DynamicServerWeightTask 的定时任务,默认情况下每隔 30 秒会计算一次 各个服务实例的权重,权重的计算规则也很简单, 如果一个服务的平均响应时间越短则权重越大,那么该服务实例被选中执行任务的概率也就越大
ClientConfigEnabledRoundRobinRule
ClientConfigEnabledRoundRobinRule 选择策略的实现很简单,内部定义了 RoundRobinRule choose 方法还是采用了 RoundRobinRule 的 choose方法,所以它的选择策略 RoundRobinRule 的选择策略一致 ,不赘述。
BestAvailableRule
BestAvailableRule 继承自 ClientConfigEnabledRoundRobinRule ,它在 ClientConfigEnabledRoundRobinRule 的基础上主要增加了根据 loadBalancerStats中保存的服务实例的状态信息来 过滤掉失效的服务实例的功能,然后顺便找出并发请求最小的服务实例来使用。 然而 loadBalancerStats有可能为 null ,如果 loadBalancerStats null ,则 BestAvailableRule 将采用它的父类即 ClientConfigEnabledRoundRobinRule的服务选取策略(线性轮询)。
ZoneAvoidanceRule
默认规则 ,复合判断server所在区域的性能和server的可用性选择服务器。
ZoneAvoidanceRule PredicateBasedRule 的一个实现类,只不过这里多一个过滤条件, ZoneAvoidanceRule 中的过滤条件是以
ZoneAvoidancePredicate 为主过滤条件和以
AvailabilityPredicate 为次过滤条件组成的一个叫做 CompositePredicate 的组合过滤条件,过滤成功之后,继续采用线性轮询
( RoundRobinRule ) 的方式从过滤结果中选择一个出来。 AvailabilityFilteringRule (先过滤掉故障实例,再选择并发较小的实例) 过滤掉一直连接失败的被标记为circuit tripped的后端Server,并过滤掉那些高并发的后端Server或者使用一个AvailabilityPredicate来 包含过滤server的逻辑,其实就是检查status里记录的各个Server的运行状态。
3.2.1 修改默认负载均衡策略
@Configurationpublic class RibbonConfig {/*** 全局配置* 指定负载均衡策略* @return*/@Bean
public IRule iRule() {// 指定使用Nacos提供的负载均衡策略(优先调用同一集群的实例,基于随机权重)
return new NacosRule();
}
}
注意:此处有坑。 不能写在@SpringbootApplication注解的@CompentScan扫描得到的地方,否则自定义的配置类就会被所有的 RibbonClients共享。 不建议这么使用,推荐yml方式
利用@RibbonClient指定微服务及其负载均衡策略。
 @SpringBootApplication(exclude = {DataSourceAutoConfiguration.class,DruidDataSourceAutoConfigure.class})//@RibbonClient(name = "mall‐order",configuration = RibbonConfig.class)//配置多个 RibbonConfig不能被@SpringbootApplication的@CompentScan扫描到,否则就是全局配置的效果@RibbonClients(value = {// 在SpringBoot主程序扫描的包外定义配置类@RibbonClient(name = "mall‐order",configuration = RibbonConfig.class),@RibbonClient(name = "mall‐account",configuration = RibbonConfig.class)})
public class MallUserRibbonDemoApplication {public static void main(String[] args) {SpringApplication.run(MallUserRibbonDemoApplication.class, args);}}
配置文件 :调用指定微服务提供的服务时,使用对应的负载均衡算法
修改application.yml
 # 被调用的微服务名mall‐order:ribbon:# 指定使用Nacos提供的负载均衡策略(优先调用同一集群的实例,基于随机&权重)NFLoadBalancerRuleClassName: com.alibaba.cloud.nacos.ribbon.NacosRule
3.2.2 自定义负载均衡策略
通过实现 IRule 接口可以自定义负载策略,主要的选择服务逻辑在 choose 方法中。
1) 实现基于Nacos权重的负载均衡策略
@Slf4jpublic class NacosRandomWithWeightRule extends AbstractLoadBalancerRule {@Autowiredprivate NacosDiscoveryProperties nacosDiscoveryProperties;@Overridepublic Server choose(Object key) {DynamicServerListLoadBalancer loadBalancer = (DynamicServerListLoadBalancer) getLoadBalancer();String serviceName = loadBalancer.getName();NamingService namingService = nacosDiscoveryProperties.namingServiceInstance();try {//nacos基于权重的算法Instance instance = namingService.selectOneHealthyInstance(serviceName);return new NacosServer(instance);} catch (NacosException e) {log.error("获取服务实例异常:{}", e.getMessage());e.printStackTrace();}return null;}@Overridepublic void initWithNiwsConfig(IClientConfig clientConfig) {}}
2) 配置自定义的策略
2.1)配置文件:
修改application.yml
# 被调用的微服务名mall‐order:ribbon:# 自定义的负载均衡策略(基于随机&权重)NFLoadBalancerRuleClassName: com.tuling.mall.ribbondemo.rule.NacosRandomWithWeightRule
3.3 饥饿加载
在进行服务调用的时候,如果网络情况不好,第一次调用会超时。
Ribbon默认懒加载,意味着只有在发起调用的时候才会创建客户端。
开启饥饿加载,解决第一次调用慢的问
 ribbon:eager‐load:# 开启ribbon饥饿加载enabled: true# 配置mall‐user使用ribbon饥饿加载,多个使用逗号分隔clients: mall‐order
源码对应属性配置类:RibbonEagerLoadProperties
测试:

相关文章:

微服务负载均衡器Ribbon

1.什么是Ribbon 目前主流的负载方案分为以下两种: 集中式负载均衡,在消费者和服务提供方中间使用独立的代理方式进行负载,有硬件的(比如 F5),也有软件的(比如 Nginx)。 客户端根据…...

win10戴尔电脑安装操作系统遇到的问题MBR分区表只能安装GPT磁盘

首先按F2启动boot管理界面 调整启动盘的启动顺序,这里启动U盘为第一顺序。 第一步 选择安装程序的磁盘 第二步 转换磁盘为GPT磁盘 一般出现 磁盘0和1,说明存在两个盘 ,这里两个盘不是说的是C盘和D盘的问题,而是在物理上实际存在…...

阿里云服务器(vgn7i-vws) anaconda(py39)+pytorch1.12.0(cu113)

用xshell连接ip地址,端口号22,输入用户密码 安装anaconda 2022 10 py3.9 wget https://repo.anaconda.com/archive/Anaconda3-2022.10-Linux-x86_64.sh sha256sum Anaconda3-2022.10-Linux-x86_64.sh #校验数据完整性 chmod ux Anaconda3-2022.10-…...

使用 STM32F7 和 TensorFlow Lite 开发低功耗人脸识别设备

本文旨在介绍如何使用 STM32F7 和 TensorFlow Lite框架开发低功耗的人脸识别设备。首先,我们将简要介绍 STM32F7 的特点和能力。接下来,我们将讨论如何使用 TensorFlow Lite 在 STM32F7 上实现人脸识别算法。然后,我们将重点关注如何优化系统…...

【wireshark】基础学习

TOC 查询tcp tcp 查询tcp握手请求的代码 tcp.flags.ack 0 确定tcp握手成功的代码 tcp.flags.ack 1 确定tcp连接请求的代码 tcp.flags.ack 0 and tcp.flags.syn 1 3次握手后确定发送成功的查询 tcp.flags.fin 1 查询某IP对外发送的数据 ip.src_host 192.168.73.134 查询某…...

使用Java连接Hbase

我在网上试 了很多代码,但是大部分都不能实现,Java连接Hbase,一直报一个错 java.util.concurrent.ExecutionException: org.apache.zookeeper.KeeperException$NoNodeException: KeeperErrorCode NoNode for /hbase/hbaseid一直也不清楚为什…...

OCR是什么意思,有哪些好用的OCR识别软件?

1. 什么是OCR? OCR(Optical Character Recognition)是一种光学字符识别技术,它可以将印刷体文字转换为可编辑的电子文本。OCR技术通过扫描和分析图像中的文字,并将其转化为计算机可识别的文本格式,从而…...

Springmvc实现增删改差

一、包结构 二、各层代码 (1)数据User public class User {private Integer id;private String userName;private String note;public User() {super();}public User(Integer i, String userName, String note) {super();this.id i;this.userName userName;this.note note;…...

CentOS 7 使用cJSON 库

什么是JSON JSON是一种轻量级的数据交换格式,可读性强、编写简单。键值对组合编写规则,键名使用双引号包裹,冒号:分隔符后面紧跟着数值,有两种常用的数据类型是对象和数组。 对象:使用花括号{}包裹起来的…...

Linux——使用kill结束进程并恢复进程

目录 查看进程结束进程修复进程 查看进程 在linux中,关闭某进程之前先查看已经在运行的进程有哪些,使用下面命令查看: ps aux | grep -i apt 命令查看哪个进程正在使用 apt结束进程 结束某线程的命令为: sudo kill -9 PID 命令…...

【Linux虚拟内存的配置】

设置Linux虚拟内存 注意:在做项目时,电脑内存不够用,怎么办? 这里给大家提供了一种解决方案,用磁盘换内存,具体如下: 虚拟内存swap介绍 如果你的服务器的总是报告内存不足,并且时常因为内存不足而引发服务被强制kill的话,在不增加物理内…...

基于C#实现外排序

一、N 路归并排序 1.1、概序 我们知道算法中有一种叫做分治思想,一个大问题我们可以采取分而治之,各个突破,当子问题解决了,大问题也就 KO 了,还有一点我们知道内排序的归并排序是采用二路归并的,因为分治…...

HTML CSS登录网页设计

一、效果图: 二、HTML代码: <!DOCTYPE html> <!-- 定义HTML5文档 --> <html lang="en"> …...

dos 命令 判断路径中包含某字符并移动文件

SET GenFolder C:\Users\administered\Desktop\t2\old_file set path1C:\Users\administered\Desktop\t1\crontab_master set path2C:\Users\administered\Desktop\t2\old_file if not exist %GenFolder% ( echo %GenFolder%目录不存在&#xff0c;已创建该目录&#x…...

electron+vue3全家桶+vite项目搭建【26】electron本地安装Vue Devtool插件,安装浏览器扩展

文章目录 引入获取vue devtool导入插件排除插件的npm脚本最终效果 引入 demo项目地址 Vue Devtools插件是vue项目必备插件&#xff0c;它是安装在浏览器里的&#xff0c;而咱们的electron中实际就包含了一个浏览器&#xff0c;同理它也可以加载浏览器插件 获取vue devtool 直…...

Modbus TCP

Modbus &#xff08;&#x1f446; 百度百科&#xff0c;放心跳转&#xff09; 起源 Modbus 由 Modicon 公司于 1979 年开发&#xff0c;是一种工业现场总线协议标准。 Modbus 通信协议具有多个变种&#xff0c;支持串口&#xff0c;以太网多个版本&#xff0c;其中最著名的…...

基于人工兔算法优化概率神经网络PNN的分类预测 - 附代码

基于人工兔算法优化概率神经网络PNN的分类预测 - 附代码 文章目录 基于人工兔算法优化概率神经网络PNN的分类预测 - 附代码1.PNN网络概述2.变压器故障诊街系统相关背景2.1 模型建立 3.基于人工兔优化的PNN网络5.测试结果6.参考文献7.Matlab代码 摘要&#xff1a;针对PNN神经网络…...

微服务学习(十二):安装Minio

微服务学习&#xff08;十二&#xff09;&#xff1a;安装Minio 一、简介 MinIO 是一款基于Go语言发开的高性能、分布式的对象存储系统。客户端支持Java,Net,Python,Javacript, Golang语言。MinIO系统&#xff0c;非常适合于存储大容量非结构化的数据&#xff0c;例如图片、视…...

SpringCloud实用-OpenFeign整合okHttp

文章目录 前言正文一、OkHttpFeignConfiguration 的启用1.1 分析配置类1.2 得出结论&#xff0c;需要增加配置1.3 调试 二、OkHttpFeignLoadBalancerConfiguration 的启用2.1 分析配置类2.2 得出结论2.3 测试 附录附1&#xff1a;本系列文章链接附2&#xff1a;OkHttpClient 增…...

Python 异步套接字编程

异步套接字编程是异步编程在网络通信中的应用&#xff0c;它使用异步 IO 操作和事件循环来实现高并发的网络应用。Python 中的 asyncio 模块提供了对异步套接字编程的支持&#xff0c;以下是异步套接字编程的一些重要概念和使用方法&#xff1a; 1. 异步套接字服务器&#xff…...

React 第五十五节 Router 中 useAsyncError的使用详解

前言 useAsyncError 是 React Router v6.4 引入的一个钩子&#xff0c;用于处理异步操作&#xff08;如数据加载&#xff09;中的错误。下面我将详细解释其用途并提供代码示例。 一、useAsyncError 用途 处理异步错误&#xff1a;捕获在 loader 或 action 中发生的异步错误替…...

day52 ResNet18 CBAM

在深度学习的旅程中&#xff0c;我们不断探索如何提升模型的性能。今天&#xff0c;我将分享我在 ResNet18 模型中插入 CBAM&#xff08;Convolutional Block Attention Module&#xff09;模块&#xff0c;并采用分阶段微调策略的实践过程。通过这个过程&#xff0c;我不仅提升…...

Unit 1 深度强化学习简介

Deep RL Course ——Unit 1 Introduction 从理论和实践层面深入学习深度强化学习。学会使用知名的深度强化学习库&#xff0c;例如 Stable Baselines3、RL Baselines3 Zoo、Sample Factory 和 CleanRL。在独特的环境中训练智能体&#xff0c;比如 SnowballFight、Huggy the Do…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

Element Plus 表单(el-form)中关于正整数输入的校验规则

目录 1 单个正整数输入1.1 模板1.2 校验规则 2 两个正整数输入&#xff08;联动&#xff09;2.1 模板2.2 校验规则2.3 CSS 1 单个正整数输入 1.1 模板 <el-formref"formRef":model"formData":rules"formRules"label-width"150px"…...

面向无人机海岸带生态系统监测的语义分割基准数据集

描述&#xff1a;海岸带生态系统的监测是维护生态平衡和可持续发展的重要任务。语义分割技术在遥感影像中的应用为海岸带生态系统的精准监测提供了有效手段。然而&#xff0c;目前该领域仍面临一个挑战&#xff0c;即缺乏公开的专门面向海岸带生态系统的语义分割基准数据集。受…...

七、数据库的完整性

七、数据库的完整性 主要内容 7.1 数据库的完整性概述 7.2 实体完整性 7.3 参照完整性 7.4 用户定义的完整性 7.5 触发器 7.6 SQL Server中数据库完整性的实现 7.7 小结 7.1 数据库的完整性概述 数据库完整性的含义 正确性 指数据的合法性 有效性 指数据是否属于所定…...

tomcat入门

1 tomcat 是什么 apache开发的web服务器可以为java web程序提供运行环境tomcat是一款高效&#xff0c;稳定&#xff0c;易于使用的web服务器tomcathttp服务器Servlet服务器 2 tomcat 目录介绍 -bin #存放tomcat的脚本 -conf #存放tomcat的配置文件 ---catalina.policy #to…...

API网关Kong的鉴权与限流:高并发场景下的核心实践

&#x1f525;「炎码工坊」技术弹药已装填&#xff01; 点击关注 → 解锁工业级干货【工具实测|项目避坑|源码燃烧指南】 引言 在微服务架构中&#xff0c;API网关承担着流量调度、安全防护和协议转换的核心职责。作为云原生时代的代表性网关&#xff0c;Kong凭借其插件化架构…...

MeshGPT 笔记

[2311.15475] MeshGPT: Generating Triangle Meshes with Decoder-Only Transformers https://library.scholarcy.com/try 真正意义上的AI生成三维模型MESHGPT来袭&#xff01;_哔哩哔哩_bilibili GitHub - lucidrains/meshgpt-pytorch: Implementation of MeshGPT, SOTA Me…...