Redis-缓存高可用集群
Redis集群方案比较
-
哨兵模式
性能和高可用性等各方面表现一般,特别是在主从切换的瞬间存在访问瞬断的情况。另外哨兵模式只有一个主节点对外提供服务,没法支持很高的并发,且单个主节点内存也不宜设置得过大,否则会导致持久化文件过大,影响数据恢复或主从同步的效率
-
高可用集群模式
Redis集群是由多个主从节点群组成的分布式服务器群,它具有复制、高可用和分片特性。Redis集群不需要sentinel哨兵也能完成节点移除和故障转移的功能。需要将每个节点设置成集群模式,这种集群模式没有中心节点,可水平扩展,据官方文档称可以线性扩展到上万个节点(官方推荐不超过1000个节点)。Redis集群的性能和高可用性均优于之前版本的哨兵模式,且集群配置非常简单
Redis高可用集群搭建
redis集群搭建
redis集群需要至少三个master节点,我们这里搭建三个master节点,并且给每个master再搭建一个slave节点,总共6个redis节点,这里用三台机器部署6个redis实例,每台机器一主一从,搭建集群的步骤如下:
第一步:在第一台机器的/usr/local下创建文件夹redis-cluster,然后在其下面分别创建2个文件夾如下
(1)mkdir -p /usr/local/redis-cluster
(2)mkdir 8001 8004第一步:把之前的redis.conf配置文件copy到8001下,修改如下内容:
(1)daemonize yes
(2)port 8001(分别对每个机器的端口号进行设置)
(3)pidfile /var/run/redis_8001.pid # 把pid进程号写入pidfile配置的文件
(4)dir /usr/local/redis-cluster/8001/(指定数据文件存放位置,必须要指定不同的目录位置,不然会丢失数据)
(5)cluster-enabled yes(启动集群模式)
(6)cluster-config-file nodes-8001.conf(集群节点信息文件,这里800x最好和port对应上)
(7)cluster-node-timeout 10000(8)# bind 127.0.0.1(bind绑定的是自己机器网卡的ip,如果有多块网卡可以配多个ip,代表允许客户端通过机器的哪些网卡ip去访问,内网一般可以不配置bind,注释掉即可)(9)protected-mode no (关闭保护模式)(10)appendonly yes
如果要设置密码需要增加如下配置:(11)requirepass 123456 (设置redis访问密码)(12)masterauth 123456 (设置集群节点间访问密码,跟上面一致)第三步:把修改后的配置文件,copy到8004,修改第2、3、4、6项里的端口号,可以用批量替换:
:%s/源字符串/目的字符串/g 第四步:另外两台机器也需要做上面几步操作,第二台机器用8002和8005,第三台机器用8003和8006第五步:分别启动6个redis实例,然后检查是否启动成功
(1)/usr/local/redis-5.0.3/src/redis-server /usr/local/redis-cluster/800*/redis.conf
(2)ps -ef | grep redis 查看是否启动成功第六步:用redis-cli创建整个redis集群(redis5以前的版本集群是依靠ruby脚本redis-trib.rb实现)
# 下面命令里的1代表为每个创建的主服务器节点创建一个从服务器节点
# 执行这条命令需要确认三台机器之间的redis实例要能相互访问,可以先简单把所有机器防火墙关掉,如果不关闭防火墙则需要打开redis服务端口和集群节点gossip通信端口16379(默认是在redis端口号上加1W)
# 关闭防火墙
# systemctl stop firewalld # 临时关闭防火墙
# systemctl disable firewalld # 禁止开机启动
# 注意:下面这条创建集群的命令大家不要直接复制,里面的空格编码可能有问题导致创建集群不成功
(1)/usr/local/redis-5.0.3/src/redis-cli -a 123456 --cluster create --cluster-replicas 1 192.168.0.61:8001 192.168.0.62:8002 192.168.0.63:8003 192.168.0.61:8004 192.168.0.62:8005 192.168.0.63:8006 第七步:验证集群:
(1)连接任意一个客户端即可:./redis-cli -c -h -p (-a访问服务端密码,-c表示集群模式,指定ip地址和端口号)如:/usr/local/redis-5.0.3/src/redis-cli -a 123456 -c -h 192.168.0.61 -p 800*
(2)进行验证: cluster info(查看集群信息)、cluster nodes(查看节点列表)
(3)进行数据操作验证
(4)关闭集群则需要逐个进行关闭,使用命令:
/usr/local/redis-5.0.3/src/redis-cli -a 123456 -c -h 192.168.0.60 -p 800* shutdown
Java操作redis集群
redis的java客户端jedis,引入相关依赖:
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId>
</dependency><dependency><groupId>org.apache.commons</groupId><artifactId>commons-pool2</artifactId>
</dependency>
访问代码:
public class JedisClusterTest {public static void main(String[] args) throws IOException {JedisPoolConfig config = new JedisPoolConfig();config.setMaxTotal(20);config.setMaxIdle(10);config.setMinIdle(5);Set<HostAndPort> jedisClusterNode = new HashSet<HostAndPort>();jedisClusterNode.add(new HostAndPort("192.168.0.61", 8001));jedisClusterNode.add(new HostAndPort("192.168.0.62", 8002));jedisClusterNode.add(new HostAndPort("192.168.0.63", 8003));jedisClusterNode.add(new HostAndPort("192.168.0.61", 8004));jedisClusterNode.add(new HostAndPort("192.168.0.62", 8005));jedisClusterNode.add(new HostAndPort("192.168.0.63", 8006));JedisCluster jedisCluster = null;try {//connectionTimeout:指的是连接一个url的连接等待时间//soTimeout:指的是连接上一个url,获取response的返回等待时间jedisCluster = new JedisCluster(jedisClusterNode, 6000, 5000, 10, "123456", config);System.out.println(jedisCluster.set("cluster", "123456"));System.out.println(jedisCluster.get("cluster"));} catch (Exception e) {e.printStackTrace();} finally {if (jedisCluster != null)jedisCluster.close();}}
}运行效果如下:
OK
123456
集群的Spring Boot整合Redis,引入相关依赖:
<dependency><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-data-redis</artifactId>
</dependency><dependency><groupId>org.apache.commons</groupId><artifactId>commons-pool2</artifactId>
</dependency>
springboot项目核心配置:
server:port: 8080spring:redis:database: 0timeout: 3000password: 123456cluster:nodes: 192.168.0.61:8001,192.168.0.62:8002,192.168.0.63:8003,192.168.0.61:8004,192.168.0.62:8005,192.168.0.63:8006lettuce:pool:max-idle: 50min-idle: 10max-active: 100max-wait: 1000
访问代码:
@RestController
public class IndexController {private static final Logger logger = LoggerFactory.getLogger(IndexController.class);@Autowiredprivate StringRedisTemplate stringRedisTemplate;@RequestMapping("/test_cluster")public void testCluster() throws InterruptedException {stringRedisTemplate.opsForValue().set("gc", "666");System.out.println(stringRedisTemplate.opsForValue().get("gc"));}
}
Redis集群原理分析
Redis Cluster 将所有数据划分为 16384 个 slots(槽位),每个节点负责其中一部分槽位。槽位的信息存储于每个节点中。
当 Redis Cluster 的客户端来连接集群时,它也会得到一份集群的槽位配置信息并将其缓存在客户端本地。这样当客户端要查找某个 key 时,可以直接定位到目标节点。同时因为槽位的信息可能会存在客户端与服务器不一致的情况,还需要纠正机制来实现槽位信息的校验调整。
槽位定位算法
Cluster 默认会对 key 值使用 crc16 算法进行 hash 得到一个整数值,然后用这个整数值对 16384 进行取模来得到具体槽位。
HASH_SLOT = CRC16(key) mod 16384
跳转重定位
当客户端向一个错误的节点发出了指令,该节点会发现指令的 key 所在的槽位并不归自己管理,这时它会向客户端发送一个特殊的跳转指令携带目标操作的节点地址,告诉客户端去连这个节点去获取数据。客户端收到指令后除了跳转到正确的节点上去操作,还会同步更新纠正本地的槽位映射表缓存,后续所有 key 将使用新的槽位映射表。
Redis集群节点间的通信机制
redis cluster节点间采取gossip协议进行通信
维护集群的元数据(集群节点信息,主从角色,节点数量,各节点共享的数据等)有两种方式:集中式和gossip
集中式:
优点在于元数据的更新和读取,时效性非常好,一旦元数据出现变更立即就会更新到集中式的存储中,其他节点读取的时候立即就可以立即感知到;不足在于所有的元数据的更新压力全部集中在一个地方,可能导致元数据的存储压力。 很多中间件都会借助zookeeper集中式存储元数据。
gossip:
gossip协议包含多种消息,包括ping,pong,meet,fail等等。
meet:某个节点发送meet给新加入的节点,让新节点加入集群中,然后新节点就会开始与其他节点进行通信;
ping:每个节点都会频繁给其他节点发送ping,其中包含自己的状态还有自己维护的集群元数据,互相通过ping交换元数据(类似自己感知到的集群节点增加和移除,hash slot信息等);
pong:对ping和meet消息的返回,包含自己的状态和其他信息,也可以用于信息广播和更新;
fail:某个节点判断另一个节点fail之后,就发送fail给其他节点,通知其他节点,指定的节点宕机了。
gossip协议的优点在于元数据的更新比较分散,不是集中在一个地方,更新请求会陆陆续续,打到所有节点上去更新,有一定的延时,降低了压力;缺点在于元数据更新有延时可能导致集群的一些操作会有一些滞后。
gossip通信的10000端口
每个节点都有一个专门用于节点间gossip通信的端口,就是自己提供服务的端口号+10000,比如7001,那么用于节点间通信的就是17001端口。 每个节点每隔一段时间都会往另外几个节点发送ping消息,同时其他几点接收到ping消息之后返回pong消息。
网络抖动
真实世界的机房网络往往并不是风平浪静的,它们经常会发生各种各样的小问题。比如网络抖动就是非常常见的一种现象,突然之间部分连接变得不可访问,然后很快又恢复正常。
为解决这种问题,Redis Cluster 提供了一种选项cluster-node-timeout
,表示当某个节点持续 timeout 的时间失联时,才可以认定该节点出现故障,需要进行主从切换。如果没有这个选项,网络抖动会导致主从频繁切换 (数据的重新复制)。
Redis集群选举原理分析
当slave发现自己的master变为FAIL状态时,便尝试进行Failover,期望成为新的master。由于挂掉的master可能会有多个slave,从而存在多个slave竞争成为master节点的过程, 其过程如下:
1、slave发现自己的master变为FAIL
2、将自己记录的集群currentEpoch加1,并广播FAILOVER_AUTH_REQUEST 信息
3、其他节点收到该信息,只有master响应,判断请求者的合法性,并发送FAILOVER_AUTH_ACK,对每一个epoch只发送一次ack
4、尝试failover的slave收集master返回的FAILOVER_AUTH_ACK
5、slave收到超过半数master的ack后变成新Master(这里解释了集群为什么至少需要三个主节点,如果只有两个,当其中一个挂了,只剩一个主节点是不能选举成功的)
6、slave广播Pong消息通知其他集群节点。
从节点并不是在主节点一进入 FAIL 状态就马上尝试发起选举,而是有一定延迟,一定的延迟确保我们等待FAIL状态在集群中传播,slave如果立即尝试选举,其它masters或许尚未意识到FAIL状态,可能会拒绝投票
延迟计算公式:DELAY = 500ms + random(0 ~ 500ms) + SLAVE_RANK * 1000ms
SLAVE_RANK表示此slave已经从master复制数据的总量的rank。Rank越小代表已复制的数据越新。这种方式下,持有最新数据的slave将会首先发起选举(理论上)
集群脑裂数据丢失问题
redis集群没有过半机制会有脑裂问题,网络分区导致脑裂后多个主节点对外提供写服务,一旦网络分区恢复,会将其中一个主节点变为从节点,这时会有大量数据丢失。
规避方法可以在redis配置里加上参数(这种方法不可能百分百避免数据丢失,参考集群leader选举机制):
min-slaves-to-write 1 //写数据成功最少同步的slave数量,这个数量可以模仿大于半数机制配置,比如集群总共三个节点可以配置1,加上leader就是2,超过了半数,该参数在redis最新版本里名字已经换成了min-replicas-to-write
注意:这个配置在一定程度上会影响集群的可用性,比如slave要是少于1个,这个集群就算leader正常也不能提供服务了,需要具体场景权衡选择。
集群是否完整才能对外提供服务
当redis.conf的配置cluster-require-full-coverage为no时,表示当负责一个插槽的主库下线且没有相应的从库进行故障恢复时,集群仍然可用,如果为yes则集群不可用。
Redis集群为什么至少需要三个master节点,并且推荐节点数为奇数?
因为新master的选举需要大于半数的集群master节点同意才能选举成功,如果只有两个master节点,当其中一个挂了,是达不到选举新master的条件的。
奇数个master节点可以在满足选举该条件的基础上节省一个节点,比如三个master节点和四个master节点的集群相比,大家如果都挂了一个master节点都能选举新master节点,如果都挂了两个master节点都没法选举新master节点了,所以奇数的master节点更多的是从节省机器资源角度出发说的。
Redis集群对批量操作命令的支持
对于类似mset,mget这样的多个key的原生批量操作命令,redis集群只支持所有key落在同一slot的情况,如果有多个key一定要用mset命令在redis集群上操作,则可以在key的前面加上{XX},这样参数数据分片hash计算的只会是大括号里的值,这样能确保不同的key能落到同一slot里去,示例如下:
mset {user1}:1:name gc {user1}:1:age 18
假设name和age计算的hash slot值不一样,但是这条命令在集群下执行,redis只会用大括号里的 user1 做hash slot计算,所以算出来的slot值肯定相同,最后都能落在同一slot。
哨兵leader选举流程
当一个master服务器被某sentinel视为下线状态后,该sentinel会与其他sentinel协商选出sentinel的leader进行故障转移工作。每个发现master服务器进入下线的sentinel都可以要求其他sentinel选自己为sentinel的leader,选举是先到先得。同时每个sentinel每次选举都会自增配置纪元(选举周期),每个纪元中只会选择一个sentinel的leader。如果所有超过一半的sentinel选举某sentinel作为leader。之后该sentinel进行故障转移操作,从存活的slave中选举出新的master,这个选举过程跟集群的master选举很类似。
哨兵集群只有一个哨兵节点,redis的主从也能正常运行以及选举master,如果master挂了,那唯一的那个哨兵节点就是哨兵leader了,可以正常选举新master。
不过为了高可用一般都推荐至少部署三个哨兵节点。为什么推荐奇数个哨兵节点原理跟集群奇数个master节点类似。
相关文章:

Redis-缓存高可用集群
Redis集群方案比较 哨兵模式 性能和高可用性等各方面表现一般,特别是在主从切换的瞬间存在访问瞬断的情况。另外哨兵模式只有一个主节点对外提供服务,没法支持很高的并发,且单个主节点内存也不宜设置得过大,否则会导致持久化文件过…...
Docker的入门
Docker的入门 防火墙Docker的命令镜像相关的命令运行容器容器相关的命令 Docker作为一个软件集装箱化平台,可以让开发者构建应用程序时,将它与其依赖环境一起打包到一个容器中,然后很容易地发布和应用到任意平台中。 docker有3大核心…...

AJAX技术-04-- 跨域说明
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 1 同源策略同源策略介绍规定要求 请求协议://域名:端口号 关于同源策略练习关于同源策略总结 2.JSONPJSONP原理说明关于JSONP优化 3.CORS介绍介绍不允许跨域说明跨域…...

蓝桥杯每日一题2023.11.23
题目描述 题目分析 本题使用递归模拟即可,将每一个大格子都可以拆分看成几个小格子,先将最开始的数字进行填入,使每一个对应小格子的值都为大格子对应的数,搜索找到符合要求的即可 (答案:50 33 30 41&am…...

20231124给RK3399的挖掘机开发板在Andorid10下加鼠标右键返回
20231124给RK3399的挖掘机开发板在Andorid10下加鼠标右键返回 2023/11/24 12:19 百度:RK3399 Android10 右键返回 https://blog.csdn.net/danhu/article/details/122467256 android9/android10 鼠标右键返回(已验证) danhu 于 2022-01-13 09:46:42 发布 android10 …...

云计算实验如何结合AI来提高效率!
随着AI助手的流行,我们现在无论是学习还是工作都会带着一个他/她,如何让AI助手提高我们的工作效率是我们需要进化的方向。下面结合“云计算实验”来分享一下如何让AI帮助我们学得更快学得更好。 一、学习某个软件或复杂命令 比如在学习RockyLinux9.2中…...
前端路由hash和history的六大区别
前端路由hash和history的区别 前言谁的URL有#回车刷新时hash和history变化 谁支持低版本浏览器hash不会重新加载页面谁有历史记录谁需要后台配置hash缺点 前言 本文主要讲解hash和history路由的区别,那么好本文正式开始。 谁的URL有# 路由Hash的地址上有#,而hist…...
解决多选删除页面不同步问题
多选删除一般有两种情况: 1,删除接口支持传多个id,这是最理想的方法,建议大家积极与后端进行沟通解决。之后只需要判断接口回调刷新页面即可! 2,删除接口不支持传多个id,这就是接下来我们要处…...

QQ空间上传一次 500张限制突破记录
手机又好多照片了,用手机上传耽误时间,就导出到电脑了,上传到qq空间去。 结果发现不开通黄钻无法上传原图,那就开通吧! 开通了黄钻,居然不能一次上传超过 500 张,开通有何用? 五千…...
springboot3.x+springsecurity6.x多种方式登录验证
最新的 Spring Security 5.7 及以上版本,更新了不少内容,之前的 WebSecurityConfigurerAdapter 已经被废弃了,而且,要同时实现用户名密码登录、手机验证码登录、邮箱、微信小程序等登录方式,跟之前的配置方式都会有所不…...

【数据结构实验】图(二)将邻接矩阵存储转换为邻接表存储
文章目录 1. 引言2. 邻接表表示图的原理2.0 图的基础知识a. 类型b. 表示 2.1 有向权图2.2 无向权图2.3 无向非权图2.4 有向非权图 3. 实验内容3.1 实验题目(一)数据结构要求(二)输入要求(三)输出要求 3.2 算…...

【LeetCode】挑战100天 Day15(热题+面试经典150题)
【LeetCode】挑战100天 Day15(热题面试经典150题) 一、LeetCode介绍二、LeetCode 热题 HOT 100-172.1 题目2.2 题解 三、面试经典 150 题-173.1 题目3.2 题解 一、LeetCode介绍 LeetCode是一个在线编程网站,提供各种算法和数据结构的题目&…...

面试:RabbitMQ相关问题
文章目录 简单介绍RabbitMQRabbitMQ架构什么是 RabbitMQ?有什么显著的特点?RabbitMQ 有那些基本概念?RabbitMQ routing 路由模式消息怎么路由?RabbitMQ publish/subscribe 发布订阅(共享资源)能够在地理上分开的不同数据中心使用 …...

SpringMVC系列-7 @CrossOrigin注解与跨域问题
背景 前段时间帮同事分析了一个跨域问题,正好系统分析和整理一下。 1.跨域 理解同源策略是理解跨域的前提。同源策略定义如下: 在同一来源的页面和脚本之间进行数据交互时,浏览器会默认允许操作,而不会造成跨站脚本攻击&#x…...
[RK-Linux] misc分区详解
misc 其实是英文 miscellaneous 的前四个字母,杂项、混合体、大杂烩的意思。 misc 分区的概念来源于 Android 系统,Linux 系统中常用来作为系统升级时或者恢复出厂设置时使用。 misc 分区的读写:misc 分区在以下情况下会被读写。 Uboot:设备加电启动时,首先启动 Uboot,…...

用户与组管理:如何在服务器系统中管理用户和权限
你是否想过,当你登录到一个服务器系统时,你是如何被识别和授权的?你是否知道,你可以通过创建和管理用户和组来简化和优化你的系统管理工作?你是否想了解一些常用的用户和组管理命令和技巧?如果你的答案是肯…...

【负载均衡】这些内容你需要知道下
😄作者简介: 小曾同学.com,一个致力于测试开发的博主⛽️,主要职责:测试开发、CI/CD 如果文章知识点有错误的地方,还请大家指正,让我们一起学习,一起进步。 😊 座右铭:不…...

深入理解 Django 中的事务管理
概要 在数据库操作中,事务是确保数据完整性和一致性的关键机制。Django 作为一个强大的 Python Web 框架,提供了灵活而强大的事务管理功能。理解和正确使用 Django 中的事务对于开发高质量的 Web 应用至关重要。本文将深入探讨 Django 的事务管理机制&a…...
springsecurity6配置一
springsecurity6默认的过滤器是UsernamePasswordAuthenticationToken。具体操作步骤如下: 一、定义一个实体实现springsecurity的UserDetails接口 package com.school.information.core.security.entity;import com.alibaba.fastjson.annotation.JSONField; import com.scho…...
四边形不等式优化DP
目录 四边形不等式内容[HNOI2008]玩具装箱解析代码实现 参考资料 四边形不等式内容 TODO [HNOI2008]玩具装箱 解析 满足四边形不等式,决策具有单调性. 对于两个位置 i , j i, j i,j, 对应的最优决策点一定有 o p t [ i ] < o p t [ j ] opt[i] < opt[j]…...

网络编程(Modbus进阶)
思维导图 Modbus RTU(先学一点理论) 概念 Modbus RTU 是工业自动化领域 最广泛应用的串行通信协议,由 Modicon 公司(现施耐德电气)于 1979 年推出。它以 高效率、强健性、易实现的特点成为工业控制系统的通信标准。 包…...

龙虎榜——20250610
上证指数放量收阴线,个股多数下跌,盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型,指数短线有调整的需求,大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的:御银股份、雄帝科技 驱动…...
synchronized 学习
学习源: https://www.bilibili.com/video/BV1aJ411V763?spm_id_from333.788.videopod.episodes&vd_source32e1c41a9370911ab06d12fbc36c4ebc 1.应用场景 不超卖,也要考虑性能问题(场景) 2.常见面试问题: sync出…...

docker详细操作--未完待续
docker介绍 docker官网: Docker:加速容器应用程序开发 harbor官网:Harbor - Harbor 中文 使用docker加速器: Docker镜像极速下载服务 - 毫秒镜像 是什么 Docker 是一种开源的容器化平台,用于将应用程序及其依赖项(如库、运行时环…...

Redis相关知识总结(缓存雪崩,缓存穿透,缓存击穿,Redis实现分布式锁,如何保持数据库和缓存一致)
文章目录 1.什么是Redis?2.为什么要使用redis作为mysql的缓存?3.什么是缓存雪崩、缓存穿透、缓存击穿?3.1缓存雪崩3.1.1 大量缓存同时过期3.1.2 Redis宕机 3.2 缓存击穿3.3 缓存穿透3.4 总结 4. 数据库和缓存如何保持一致性5. Redis实现分布式…...

全球首个30米分辨率湿地数据集(2000—2022)
数据简介 今天我们分享的数据是全球30米分辨率湿地数据集,包含8种湿地亚类,该数据以0.5X0.5的瓦片存储,我们整理了所有属于中国的瓦片名称与其对应省份,方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

QT: `long long` 类型转换为 `QString` 2025.6.5
在 Qt 中,将 long long 类型转换为 QString 可以通过以下两种常用方法实现: 方法 1:使用 QString::number() 直接调用 QString 的静态方法 number(),将数值转换为字符串: long long value 1234567890123456789LL; …...
SQL慢可能是触发了ring buffer
简介 最近在进行 postgresql 性能排查的时候,发现 PG 在某一个时间并行执行的 SQL 变得特别慢。最后通过监控监观察到并行发起得时间 buffers_alloc 就急速上升,且低水位伴随在整个慢 SQL,一直是 buferIO 的等待事件,此时也没有其他会话的争抢。SQL 虽然不是高效 SQL ,但…...
【无标题】路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论
路径问题的革命性重构:基于二维拓扑收缩色动力学模型的零点隧穿理论 一、传统路径模型的根本缺陷 在经典正方形路径问题中(图1): mermaid graph LR A((A)) --- B((B)) B --- C((C)) C --- D((D)) D --- A A -.- C[无直接路径] B -…...

并发编程 - go版
1.并发编程基础概念 进程和线程 A. 进程是程序在操作系统中的一次执行过程,系统进行资源分配和调度的一个独立单位。B. 线程是进程的一个执行实体,是CPU调度和分派的基本单位,它是比进程更小的能独立运行的基本单位。C.一个进程可以创建和撤销多个线程;同一个进程中…...