当前位置: 首页 > news >正文

文档向量化工具(二):text2vec介绍

目录

前言

text2vec开源项目

核心能力

文本向量表示模型

本地试用

安装依赖 

下载模型到本地(如果你的网络能直接从huggingface上拉取文件,可跳过)

​运行试验代码


前言

 在上一篇文章中介绍了,如何从不同格式的文件里提取文本信息。

本篇文章将介绍,如何将提取出的文本信息转换为vector,以便后续基于vector做相似性检索。

​​​​​​文档向量化工具(一):Apache Tika介绍icon-default.png?t=N7T8https://mp.csdn.net/mp_blog/creation/editor/134488150

text2vec开源项目

text2vec是github上很受欢迎的一个开源项目。

text2vec:Text to Vector。

【GitHub地址】

https://github.com/shibing624/text2vec

【开源协议】

 Apache-2.0 license

核心能力

Text to Vector, Get Sentence Embeddings. 文本向量化,把文本(包括词、句子、段落)表征为向量矩阵。

text2vec实现了:

  1. Word2Vec
  2. RankBM25
  3. BERT
  4. Sentence-BERT
  5. CoSENT

等多种文本表征、文本相似度计算模型,并在文本语义匹配(相似度计算)任务上比较了各模型的效果。

文本向量表示模型

  • Word2Vec:通过腾讯AI Lab开源的大规模高质量中文词向量数据(800万中文词轻量版) (文件名:light_Tencent_AILab_ChineseEmbedding.bin 密码: tawe)实现词向量检索,本项目实现了句子(词向量求平均)的word2vec向量表示
  • SBERT(Sentence-BERT):权衡性能和效率的句向量表示模型,训练时通过有监督训练BERT和softmax分类函数,文本匹配预测时直接取句子向量做余弦,句子表征方法,本项目基于PyTorch复现了Sentence-BERT模型的训练和预测
  • CoSENT(Cosine Sentence):CoSENT模型提出了一种排序的损失函数,使训练过程更贴近预测,模型收敛速度和效果比Sentence-BERT更好,本项目基于PyTorch实现了CoSENT模型的训练和预测
  • BGE(BAAI general embedding):BGE模型按照retromae方法进行预训练,参考论文,再使用对比学习finetune微调训练模型,本项目基于PyTorch实现了BGE模型的微调训练和预测

本地试用

推荐用conda管理python环境

conda create -n py3.9 python=3.9 // 安装一个python3.9的环境

安装依赖 

conda install -c pytorch pytorch

pip install -U text2vec

 下载模型到本地(如果你的网络能直接从huggingface上拉取文件,可跳过)

https://huggingface.co/shibing624/text2vec-base-chinese/tree/main

本地建立一个文件夹,名字是shibing624/text2vec-base-chinese

手动点击,逐个下载文件到此文件夹

 运行试验代码

# 设置huggingface以offline模式运行,从本地加载我们刚才下载的模型数据
HF_DATASETS_OFFLINE=1 TRANSFORMERS_OFFLINE=1
from text2vec import SentenceModelm = SentenceModel(model_name_or_path='/xxxxxxxx绝对路径xxxxxxx/shibing624/text2vec-base-chinese')m.encode("如何更换花呗绑定银行卡")

运行效果

相关文章:

文档向量化工具(二):text2vec介绍

目录 前言 text2vec开源项目 核心能力 文本向量表示模型 本地试用 安装依赖 下载模型到本地(如果你的网络能直接从huggingface上拉取文件,可跳过) ​运行试验代码 前言 在上一篇文章中介绍了,如何从不同格式的文件里提取…...

vscode中pylance无法显示outline无法跳转

当打开的workspce中有较多的文件时,pylance需要分析的文件太多,导致卡住,无法分析到对应的python文件 常见的情况是,当我们在workspace中包含了data文件夹(通常是通过软连接方式把数据集链接过来)&#xf…...

番外篇之通讯录

前言:用到的知识点有枚举、结构体、数组,快速排序(用的名字排序) 下面是测试函数: test.c #define _CRT_SECURE_NO_WARNINGS 1 #include"contact.h" void menu() {printf("*************************…...

学生信息管理系统程序Python

系统主界面 在该界面中可以选择要使用功能对应的菜单进行不同的操作。在选择功能菜单时,有两种方法, 一种是输入1,另一种是按下键盘上的↑或↓方向键进行选择。这两种方法的结果是一样的,所以使用哪种方法都可以。 (…...

[js] for forEach for of 循环里await关键字的用法

1、for&#xff1a;循环中使用await的写法&#xff08;生效&#xff09; async function loop(){for( let i0; i<array.length; i ){let datas await getDatas()break} }2、forEach&#xff1a;循环中使用await的写法&#xff08;不生效&#xff09;&#xff1a; array.f…...

Linux面试题(二)

目录 17、怎么使一个命令在后台运行? 18、利用 ps 怎么显示所有的进程? 怎么利用 ps 查看指定进程的信息&#xff1f; 19、哪个命令专门用来查看后台任务? 20、把后台任务调到前台执行使用什么命令?把停下的后台任务在后台执行起来用什么命令? 21、终止进程用什么命令…...

电源控制系统架构(PCSA)之系统控制处理器组件

目录 6.4 系统控制处理器 6.4.1 SCP组件 SCP处理器Core SCP处理器Core选择 SCP处理器核内存 系统计数器和通用计时器 看门狗 电压调节器控制 时钟控制 系统控制 信息接口 电源策略单元 传感器控制 外设访问 系统访问 6.4 系统控制处理器 系统控制处理器(SCP)是…...

《已解决: ImportError: Keras requires TensorFlow 2.2 or higher 问题》

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页: &#x1f405;&#x1f43e;猫头虎的博客&#x1f390;《面试题大全专栏》 &#x1f995; 文章图文并茂&#x1f996…...

在 CentOS 7 上安装 MySQL 8

在 CentOS 7 上安装 MySQL 8 步骤 1: 添加 MySQL Yum 存储库 首先&#xff0c;我们需要添加 MySQL Yum 存储库。打开终端并执行以下命令&#xff1a; sudo yum install -y https://repo.mysql.com/mysql80-community-release-el7-3.noarch.rpm步骤 2: 导入 MySQL GPG 公钥 …...

从二极管到linux服务器

软件设计: os: 批处理系统: 轮询系统:单片机裸机开发 实时系统:ucosii,rtos,rt-thread、风和系统、liteos(主要是海思系列soc在用)等 非实时系统:linux 对os任务切换时寄存器的功能有理解。 对ipc机制有理解。 bsp: 需要对寄存器、单片机内部总线、iic、spi、uart、c…...

设计模式-16-Spring源码中的设计模式

1-Spring之观察者模式 Java、Google Guava都提供了观察者模式的实现框架。Java提供的框架比较简单&#xff0c;只包含java.util.Observable和java.util.Observer两个类。Google Guava提供的框架功能比较完善和强大&#xff1a;通过EventBus事件总线来实现观察者模式。实际上&am…...

Leetcode 2948. Make Lexicographically Smallest Array by Swapping Elements

Leetcode 2948. Make Lexicographically Smallest Array by Swapping Elements 1. 解题思路2. 代码实现 题目链接&#xff1a;2948. Make Lexicographically Smallest Array by Swapping Elements 1. 解题思路 这一题其实思路上就是分组排序&#xff0c;显然&#xff0c;对于…...

[计算机网络]应用层概述

0.写在前面: 该层为教学模型的最后一层,某种意义上来说是最接近各位开发者的一层,正因如此,这层中的很多定义和概念大家都有属于自己的理解, 完全按照书本反而才是异类,因此在这里我会去结合我做前端开发的一些经验,来处理和讲解一些概念,另外本层中的部分协议也不会过多阐述了…...

《已解决:TypeError: unhashable type: ‘slice‘ 问题》

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页: &#x1f405;&#x1f43e;猫头虎的博客&#x1f390;《面试题大全专栏》 &#x1f995; 文章图文并茂&#x1f996…...

Rust UI开发(二):iced中如何为窗口添加icon图标

注&#xff1a;此文适合于对rust有一些了解的朋友 iced是一个跨平台的GUI库&#xff0c;用于为rust语言程序构建UI界面。 想要了解如何构建简单窗口的可以看本系列的第一篇&#xff1a; Rust UI开发&#xff1a;使用iced构建UI时&#xff0c;如何在界面显示中文字符 本篇是系…...

Django(十一、auth认证模块)

文章目录 一、auth介绍auth认证相关模块及操作扩展auth_user表 一、auth介绍 Django自带一个admin路由&#xff0c;但是需要我们提供管理员账户和密码&#xff0c;如果想要使用admin后台管理&#xff0c;需要先创建表&#xff0c;然后创建管理员账户。 直接执行数据类迁移命令…...

WebSocket了解

一.什么是WebSocket WebSocket是HTML5下一种新的协议&#xff08;websocket协议本质上是一个基于tcp的协议&#xff09;它实现了浏览器与服务器全双工通信&#xff0c;能更好的节省服务器资源和带宽并达到实时通讯的目的Websocket是一个持久化的协议 二.websocket的原理 web…...

深度学习基础概念

1. 神经网络基础 神经元&#xff08;Neuron&#xff09;&#xff1a; 了解神经网络的基本组成单元。激活函数&#xff08;Activation Function&#xff09;&#xff1a; 学习常见的激活函数&#xff0c;如Sigmoid、ReLU等&#xff0c;以及它们在神经网络中的作用。前馈神经网络…...

vatee万腾科技先锋之选:vatee创新力驱动着未来发展

在科技潮流的浩荡前行中&#xff0c;Vatee万腾崭新的科技先锋之选正以强大的创新力引领着未来的发展。Vatee万腾凭借其前瞻性的技术理念和卓越的创新实践&#xff0c;成为业界的引领者&#xff0c;为整个科技行业树立了标杆。 Vatee万腾不仅仅是一家科技公司&#xff0c;更是一…...

MetaObject-BeanWrapper-MetaClass-Reflector的关系

MetaObject、BeanWrapper、MetaClass、Reflector之间是通过装饰器模式逐层进行装饰的。其中MetaObject、BeanWrapper是操作对象&#xff1b;MetaClass、Reflector是操作Class ObjectWrapper类结构图 BaseWrapper是对BeanWrapper、MapWrapper公共方法的提取及类图的优化&#…...

龙虎榜——20250610

上证指数放量收阴线&#xff0c;个股多数下跌&#xff0c;盘中受消息影响大幅波动。 深证指数放量收阴线形成顶分型&#xff0c;指数短线有调整的需求&#xff0c;大概需要一两天。 2025年6月10日龙虎榜行业方向分析 1. 金融科技 代表标的&#xff1a;御银股份、雄帝科技 驱动…...

LeetCode - 394. 字符串解码

题目 394. 字符串解码 - 力扣&#xff08;LeetCode&#xff09; 思路 使用两个栈&#xff1a;一个存储重复次数&#xff0c;一个存储字符串 遍历输入字符串&#xff1a; 数字处理&#xff1a;遇到数字时&#xff0c;累积计算重复次数左括号处理&#xff1a;保存当前状态&a…...

【快手拥抱开源】通过快手团队开源的 KwaiCoder-AutoThink-preview 解锁大语言模型的潜力

引言&#xff1a; 在人工智能快速发展的浪潮中&#xff0c;快手Kwaipilot团队推出的 KwaiCoder-AutoThink-preview 具有里程碑意义——这是首个公开的AutoThink大语言模型&#xff08;LLM&#xff09;。该模型代表着该领域的重大突破&#xff0c;通过独特方式融合思考与非思考…...

unix/linux,sudo,其发展历程详细时间线、由来、历史背景

sudo 的诞生和演化,本身就是一部 Unix/Linux 系统管理哲学变迁的微缩史。来,让我们拨开时间的迷雾,一同探寻 sudo 那波澜壮阔(也颇为实用主义)的发展历程。 历史背景:su的时代与困境 ( 20 世纪 70 年代 - 80 年代初) 在 sudo 出现之前,Unix 系统管理员和需要特权操作的…...

鸿蒙中用HarmonyOS SDK应用服务 HarmonyOS5开发一个生活电费的缴纳和查询小程序

一、项目初始化与配置 1. 创建项目 ohpm init harmony/utility-payment-app 2. 配置权限 // module.json5 {"requestPermissions": [{"name": "ohos.permission.INTERNET"},{"name": "ohos.permission.GET_NETWORK_INFO"…...

Spring AI 入门:Java 开发者的生成式 AI 实践之路

一、Spring AI 简介 在人工智能技术快速迭代的今天&#xff0c;Spring AI 作为 Spring 生态系统的新生力量&#xff0c;正在成为 Java 开发者拥抱生成式 AI 的最佳选择。该框架通过模块化设计实现了与主流 AI 服务&#xff08;如 OpenAI、Anthropic&#xff09;的无缝对接&…...

12.找到字符串中所有字母异位词

&#x1f9e0; 题目解析 题目描述&#xff1a; 给定两个字符串 s 和 p&#xff0c;找出 s 中所有 p 的字母异位词的起始索引。 返回的答案以数组形式表示。 字母异位词定义&#xff1a; 若两个字符串包含的字符种类和出现次数完全相同&#xff0c;顺序无所谓&#xff0c;则互为…...

QT: `long long` 类型转换为 `QString` 2025.6.5

在 Qt 中&#xff0c;将 long long 类型转换为 QString 可以通过以下两种常用方法实现&#xff1a; 方法 1&#xff1a;使用 QString::number() 直接调用 QString 的静态方法 number()&#xff0c;将数值转换为字符串&#xff1a; long long value 1234567890123456789LL; …...

【JavaWeb】Docker项目部署

引言 之前学习了Linux操作系统的常见命令&#xff0c;在Linux上安装软件&#xff0c;以及如何在Linux上部署一个单体项目&#xff0c;大多数同学都会有相同的感受&#xff0c;那就是麻烦。 核心体现在三点&#xff1a; 命令太多了&#xff0c;记不住 软件安装包名字复杂&…...

GC1808高性能24位立体声音频ADC芯片解析

1. 芯片概述 GC1808是一款24位立体声音频模数转换器&#xff08;ADC&#xff09;&#xff0c;支持8kHz~96kHz采样率&#xff0c;集成Δ-Σ调制器、数字抗混叠滤波器和高通滤波器&#xff0c;适用于高保真音频采集场景。 2. 核心特性 高精度&#xff1a;24位分辨率&#xff0c…...