当前位置: 首页 > news >正文

【推荐系统】MMOE笔记 20231126

paper阅读

任务差异带来的固有冲突实际上会损害至少某些任务的预测,特别是当模型参数在所有任务之间广泛共享时。(在说ESMM)

共享底层参数可以减少过拟合风险,但是会遇到任务差异引起的优化冲突,因为所有任务都需要在共享底层上使用相同的参数。(在说ESMM)

对于任务是否相关,MMOE不敏感,而ESMM和OMOE很敏感。
在两个任务相同的极端情况下,MMoE 模型和 OMoE 模型的性能几乎没有差异;
当任务之间的相关性降低时,OMoE 模型的性能明显下降,而对 MMoE 模型的影响很小。

5.2 Trainability

探讨MMOE是否容易训练。举了个例子,认为比普通 RNN 表现更好的一些门控 RNN 模型(如 LSTM 和 GRU)只是更容易训练,而不是具有更好的模型能力。

6.2 mmoe可以调整的参数
MMOE:Number of experts, number of hidden units per expert(专家数量,每个专家的隐藏单元数量)
利用验证集中,主要任务的AUC来做参数调整。

实验部分

table1的解释
鉴于任务相关性(通过皮尔逊相关性粗略测量)在两组中都不是很强,共享底部模型几乎总是多任务模型中最差的(张量因子化除外)。 L2-Constrained 和 Cross-Stitch 对于每个任务都有单独的模型参数,并添加了如何学习这些参数的约束,因此比 Shared-Bottom 表现更好。

然而,对模型参数学习的约束很大程度上依赖于任务关系假设,这不如 MMoE 使用的参数调制机制灵活。 因此,MMoE 在第 2 组中的所有方面都优于其他多任务模型,其中任务相关性甚至比第 1 组更小。
???皮尔逊相关系数越大越相关?是越大越相关。
那不是group2更相关吗?

单任务可以对辅助任务进行单独调参,所以辅助任务在多任务中没有单任务效果好,这种情况也会发生。

table4 说明

参与度(黏性)任务样本多,满意度任务样本少。

table4说明MMOE可以在大幅提高满意任务的同时,还能轻微调整参与任务,在置信区间水平为95%时。

indicates confidence interval level 95% 表示置信区间水平为95%

而esmm在提高满意度(辅助任务)时,会降低参与任务(主要任务)的指标。

相关文章:

【推荐系统】MMOE笔记 20231126

paper阅读 任务差异带来的固有冲突实际上会损害至少某些任务的预测,特别是当模型参数在所有任务之间广泛共享时。(在说ESMM) 共享底层参数可以减少过拟合风险,但是会遇到任务差异引起的优化冲突,因为所有任务都需要在…...

4. 标准 IO 库

4. 标准 IO 库 1. 标准 IO 简介2. FILE 指针3. 标准输入、标准输出和标准错误4. fopen() 和 flose()5. fread() 和 fwrite()6. fseek 定位7. 检查或复位状态7.1 feof()7.2 ferrof()7.3 clearerr() 8. 格式化 IO8.1 格式化输出8. 2 格式化输入 9. IO 缓冲9.1 文件 IO 的内核缓冲…...

SAP Smartform小结

SAP系统做打印单据用的, 感觉很不好用, 特别是要嵌入韩文时必须使用嵌入的word编辑器,运行速度简直不可忍受. 见过一些Adobe interactive form的示例, 看着相当不错, 不过据说需要花money额外买licence, 哪有smartform这种免费东西来得实惠. 一般打印需求,会要求有标题抬头,打…...

KVM虚拟机的NAT网络模式原理及过程展示

NAT的方式及原理 NAT方式是KVM安装后的默认方式。 它支持主机与虚拟机的互访,同时也支持虚拟机访问互联网,但不支持外界访问虚拟机。 default是宿主机安装虚拟机支持模块的时候自动安装的。 其中 virbr0是由宿主机虚拟机支持模块安装时产生的虚拟网络接…...

亚马逊云科技向量数据库助力生成式AI成功落地实践探秘(一) ​

随着大语言模型效果明显提升,其相关的应用不断涌现呈现出越来越火爆的趋势。其中一种比较被广泛关注的技术路线是大语言模型(LLM)知识召回(Knowledge Retrieval)的方式,在私域知识问答方面可以很好的弥补通…...

C# MemoryCache的使用和封装

封装个缓存类,方便下次使用。 using Microsoft.Extensions.Caching.Memory; using System; using System.Collections.Generic;namespace Order.Core.API.Cache {public class GlobalCache C#有偿Q群:927860652{private static readonly MemoryCache …...

【nlp】4.2 nlp中标准数据集(GLUE数据集合中的dev.tsv 、test.tsv 、train.tsv)

nlp中标准数据集 1 GLUE数据集合介绍1.1 数据集合介绍1.2 数据集合路径2 GLUE子数据集的样式及其任务类型2.1 CoLA数据集文件样式2.2 SST-2数据集文件样式2.3 MRPC数据集文件样式2.4 STS-B数据集文件样式2.5 QQP数据集文件样式2.6 (MNLI/SNLI)数据集文件样式2.7 (QNLI/RTE/WNLI…...

Java LinkedList

LinkedList 一个双向链表。 本身是基于链表进行封装的列表, 所以具备了链表的特性: 变更简单, 容量是无限的, 不必像数组提前声明容量等。 同时 LinkedList 支持存储包括 null 在内的所有数据类型。 1 链表 了解 LinkedList 之前, 我们需要先了解一下双向链的特点 单链表, 双…...

【单片机学习笔记】STC8H1K08参考手册学习笔记

STC8H1K08参考手册学习笔记 STC8H系列芯片STC8H1K08开发环境串口烧录 STC8H系列芯片 STC8H 系列单片机是不需要外部晶振和外部复位的单片机,是以超强抗干扰/超低价/高速/低功耗为目标的 8051 单片机,在相同的工作频率下,STC8H 系列单片机比传统的 8051约快12 倍速度…...

RevCol:可逆的柱状神经网络

文章目录 摘要1、简介2、方法2.1、Multi-LeVEl ReVERsible Unit2.2、可逆列架构2.2.1、MACRo设计2.2.2、MicRo 设计2.3、中间监督3、实验部分3.1、图像分类3.2、目标检测3.3、语义分割3.4、与SOTA基础模型的系统级比较3.5、更多分析实验3.5.1、可逆列架构的性能提升3.5.2、可逆…...

HCIA-RS基础-RIP路由协议

前言: RIP路由协议是一种常用的距离矢量路由协议,广泛应用于小规模网络中。本文将详细介绍RIP路由协议的两个版本:RIPv1和RIPv2,并介绍RIP的常用配置命令。通过学习本文,您将能够掌握RIP协议的基本原理、RIPv1和RIPv2的…...

虚拟化逻辑架构: LBR 网桥基础管理

目录 一、理论 1.Linux Bridge 二、实验 1.LBR 网桥管理 三、问题 1.Linux虚拟交换机如何增删 一、理论 1.Linux Bridge Linux Bridge(网桥)是用纯软件实现的虚拟交换机,有着和物理交换机相同的功能,例如二层交换&#…...

【Spring之AOP底层源码解析,持续更新中~~~】

文章目录 一、动态代理1.1、ProxyFactory1.2、Advice的分类1.3、Advisor的理解 二、创建代理对象的方式2.1、ProxyFactoryBean2.2、BeanNameAutoProxyCreator2.3、DefaultAdvisorAutoProxyCreator 三、Spring AOP的理解3.1、AOP中的概念3.2、Advice在Spring AOP中对应API3.3、T…...

C语言:有一篇文章,共三行文字,每行有80个字符。要求分别统计出单词个数、空格数。

分析&#xff1a; #include<stdio.h>&#xff1a;这是一个预处理指令&#xff0c;将stdio.h头文件包含到程序中&#xff0c;以便使用输入输出函数。 int main()&#xff1a;这是程序的主函数&#xff0c;是程序执行的入口点。 char a[3][80];&#xff1a;定义了一个二维…...

【数据结构与算法篇】一文详解数据结构之二叉树

树的介绍及二叉树的C实现 树的概念相关术语树的表示 树的概念 树是一种非线性的数据结构&#xff0c;它是由n&#xff08;n>0&#xff09;个有限结点组成一 个具有层次关系的集合。把它叫做树是因为它看起来像一棵倒挂的树&#xff0c; 也就是说它是根朝上&#xff0c;而叶朝…...

Windows主机信息收集命令

一.常用信息搜集 whoami # 查看当前用户 net user # 查看所有用户 query user # 查看当前在线用户 ipconfig /all # 查看当前主机的主机名/IP/DNS等信息 route print # 查看路由表信息 netstat -ano # 查看端口开放情况 arp -a # 查看arp解析情况 tasklist /svc # 查看进…...

「go module」一文总结 go mod 入门使用

文章目录 什么是 Go Modules为什么要使用 Modules怎么使用前置条件项目初始化如何安装/管理依赖&#xff1f;依赖安装 go get版本选择方式 替换版本 replace间接依赖 && go mod tidy远程代理 总结 什么是 Go Modules Module 是 Go 的依赖管理工具。 核心概念 Module…...

48. 旋转图像 --力扣 --JAVA

题目 给定一个 n n 的二维矩阵 matrix 表示一个图像。请你将图像顺时针旋转 90 度。 你必须在 原地 旋转图像&#xff0c;这意味着你需要直接修改输入的二维矩阵。请不要 使用另一个矩阵来旋转图像。 解题思路 顺时针旋转90度 上下翻转 对角线翻转&#xff1b;两次两层循环…...

Java中的jvm——面试题+答案(Java虚拟机更深层次的概念和原理,包括字节码、代理、内存管理、并发等)——第17期

什么是即时编译&#xff08;JIT Compilation&#xff09;&#xff1f; 答案&#xff1a; 即时编译是一种在运行时将字节码转换为本地机器代码的技术&#xff0c;以提高程序的执行速度。JVM中的JIT编译器负责执行这个过程。 什么是Java字节码&#xff1f;为什么Java使用字节码…...

docker打包前端镜像

文章目录 一、构建镜像二、查看本地镜像三、启动容器四、查看启动的容器五、保存镜像六、读取镜像七、创建镜像八、最后 docker官网 一、构建镜像 -t是给镜像命名&#xff0c;.(点)是基于当前目录的Dockerfile来构建镜像 docker build -t image_web .二、查看本地镜像 docke…...

网络六边形受到攻击

大家读完觉得有帮助记得关注和点赞&#xff01;&#xff01;&#xff01; 抽象 现代智能交通系统 &#xff08;ITS&#xff09; 的一个关键要求是能够以安全、可靠和匿名的方式从互联车辆和移动设备收集地理参考数据。Nexagon 协议建立在 IETF 定位器/ID 分离协议 &#xff08;…...

逻辑回归:给不确定性划界的分类大师

想象你是一名医生。面对患者的检查报告&#xff08;肿瘤大小、血液指标&#xff09;&#xff0c;你需要做出一个**决定性判断**&#xff1a;恶性还是良性&#xff1f;这种“非黑即白”的抉择&#xff0c;正是**逻辑回归&#xff08;Logistic Regression&#xff09;** 的战场&a…...

遍历 Map 类型集合的方法汇总

1 方法一 先用方法 keySet() 获取集合中的所有键。再通过 gey(key) 方法用对应键获取值 import java.util.HashMap; import java.util.Set;public class Test {public static void main(String[] args) {HashMap hashMap new HashMap();hashMap.put("语文",99);has…...

Java如何权衡是使用无序的数组还是有序的数组

在 Java 中,选择有序数组还是无序数组取决于具体场景的性能需求与操作特点。以下是关键权衡因素及决策指南: ⚖️ 核心权衡维度 维度有序数组无序数组查询性能二分查找 O(log n) ✅线性扫描 O(n) ❌插入/删除需移位维护顺序 O(n) ❌直接操作尾部 O(1) ✅内存开销与无序数组相…...

【Go】3、Go语言进阶与依赖管理

前言 本系列文章参考自稀土掘金上的 【字节内部课】公开课&#xff0c;做自我学习总结整理。 Go语言并发编程 Go语言原生支持并发编程&#xff0c;它的核心机制是 Goroutine 协程、Channel 通道&#xff0c;并基于CSP&#xff08;Communicating Sequential Processes&#xff0…...

大模型多显卡多服务器并行计算方法与实践指南

一、分布式训练概述 大规模语言模型的训练通常需要分布式计算技术,以解决单机资源不足的问题。分布式训练主要分为两种模式: 数据并行:将数据分片到不同设备,每个设备拥有完整的模型副本 模型并行:将模型分割到不同设备,每个设备处理部分模型计算 现代大模型训练通常结合…...

如何在最短时间内提升打ctf(web)的水平?

刚刚刷完2遍 bugku 的 web 题&#xff0c;前来答题。 每个人对刷题理解是不同&#xff0c;有的人是看了writeup就等于刷了&#xff0c;有的人是收藏了writeup就等于刷了&#xff0c;有的人是跟着writeup做了一遍就等于刷了&#xff0c;还有的人是独立思考做了一遍就等于刷了。…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

基于matlab策略迭代和值迭代法的动态规划

经典的基于策略迭代和值迭代法的动态规划matlab代码&#xff0c;实现机器人的最优运输 Dynamic-Programming-master/Environment.pdf , 104724 Dynamic-Programming-master/README.md , 506 Dynamic-Programming-master/generalizedPolicyIteration.m , 1970 Dynamic-Programm…...

OPENCV形态学基础之二腐蚀

一.腐蚀的原理 (图1) 数学表达式&#xff1a;dst(x,y) erode(src(x,y)) min(x,y)src(xx,yy) 腐蚀也是图像形态学的基本功能之一&#xff0c;腐蚀跟膨胀属于反向操作&#xff0c;膨胀是把图像图像变大&#xff0c;而腐蚀就是把图像变小。腐蚀后的图像变小变暗淡。 腐蚀…...