当前位置: 首页 > news >正文

SpringCloud 微服务全栈体系(十七)

第十一章 分布式搜索引擎 elasticsearch

七、搜索结果处理

  • 搜索的结果可以按照用户指定的方式去处理或展示。

1. 排序

  • elasticsearch 默认是根据相关度算分(_score)来排序,但是也支持自定义方式对搜索结果排序。可以排序字段类型有:keyword 类型、数值类型、地理坐标类型、日期类型等。
1.1 普通字段排序
  • keyword、数值、日期类型排序的语法基本一致。

  • 语法:

GET /indexName/_search
{"query": {"match_all": {}},"sort": [{"FIELD": "desc"  // 排序字段、排序方式ASC、DESC}]
}
  • 排序条件是一个数组,也就是可以写多个排序条件。按照声明的顺序,当第一个条件相等时,再按照第二个条件排序,以此类推
1.2 地理坐标排序
  • 地理坐标排序略有不同。
1.2.1 语法说明
GET /indexName/_search
{"query": {"match_all": {}},"sort": [{"_geo_distance" : {"FIELD" : "纬度,经度", // 文档中geo_point类型的字段名、目标坐标点"order" : "asc", // 排序方式"unit" : "km" // 排序的距离单位}}]
}
  • 这个查询的含义是:

    • 指定一个坐标,作为目标点
    • 计算每一个文档中,指定字段(必须是 geo_point 类型)的坐标到目标点的距离是多少
    • 根据距离排序
1.2.2 示例
  • 需求描述:实现对酒店数据按照到你的位置坐标的距离升序排序

  • 提示:获取你的位置的经纬度的方式:https://lbs.amap.com/demo/jsapi-v2/example/map/click-to-get-lnglat/

  • 假设我的位置是:31.034661,121.612282,寻找我周围距离最近的酒店。

在这里插入图片描述

2. 分页

  • elasticsearch 默认情况下只返回 top10 的数据。而如果要查询更多数据就需要修改分页参数了。elasticsearch 中通过修改 from、size 参数来控制要返回的分页结果:

    • from:从第几个文档开始
    • size:总共查询几个文档
  • 类似于 mysql 中的limit ?, ?

2.1 基本的分页
  • 分页的基本语法如下:
GET /hotel/_search
{"query": {"match_all": {}},"from": 0, // 分页开始的位置,默认为0"size": 10, // 期望获取的文档总数"sort": [{"price": "asc"}]
}
2.2 深度分页问题
  • 现在,我要查询 990~1000 的数据,查询逻辑要这么写:
GET /hotel/_search
{"query": {"match_all": {}},"from": 990, // 分页开始的位置,默认为0"size": 10, // 期望获取的文档总数"sort": [{"price": "asc"}]
}
  • 这里是查询 990 开始的数据,也就是 第 990~第 1000 条 数据。

  • 不过,elasticsearch 内部分页时,必须先查询 0~1000 条,然后截取其中的 990 ~ 1000 的这 10 条:

请添加图片描述

  • 查询 TOP1000,如果 es 是单点模式,这并无太大影响。

  • 但是 elasticsearch 将来一定是集群,例如我集群有 5 个节点,我要查询 TOP1000 的数据,并不是每个节点查询 200 条就可以了。

  • 因为节点 A 的 TOP200,在另一个节点可能排到 10000 名以外了。

  • 因此要想获取整个集群的 TOP1000,必须先查询出每个节点的 TOP1000,汇总结果后,重新排名,重新截取 TOP1000。

在这里插入图片描述

  • 那如果我要查询 9900~10000 的数据呢?是不是要先查询 TOP10000 呢?那每个节点都要查询 10000 条?汇总到内存中?

  • 当查询分页深度较大时,汇总数据过多,对内存和 CPU 会产生非常大的压力,因此 elasticsearch 会禁止 from+ size 超过 10000 的请求。

  • 针对深度分页,ES 提供了两种解决方案,官方文档:

    • search after:分页时需要排序,原理是从上一次的排序值开始,查询下一页数据。官方推荐使用的方式。
    • scroll:原理将排序后的文档 id 形成快照,保存在内存。官方已经不推荐使用。
2.3 小结
  • 分页查询的常见实现方案以及优缺点:

    • from + size

      • 优点:支持随机翻页
      • 缺点:深度分页问题,默认查询上限(from + size)是 10000
      • 场景:百度、京东、谷歌、淘宝这样的随机翻页搜索
    • after search

      • 优点:没有查询上限(单次查询的 size 不超过 10000)
      • 缺点:只能向后逐页查询,不支持随机翻页
      • 场景:没有随机翻页需求的搜索,例如手机向下滚动翻页
    • scroll

      • 优点:没有查询上限(单次查询的 size 不超过 10000)
      • 缺点:会有额外内存消耗,并且搜索结果是非实时的
      • 场景:海量数据的获取和迁移。从 ES7.1 开始不推荐,建议用 after search 方案。

3. 高亮

3.1 高亮原理
  • 什么是高亮显示呢?

  • 我们在百度,京东搜索时,关键字会变成红色,比较醒目,这叫高亮显示:

在这里插入图片描述

  • 高亮显示的实现分为两步:

    • 给文档中的所有关键字都添加一个标签,例如<em>标签
    • 页面给<em>标签编写 CSS 样式
3.2 实现高亮
  • 高亮的语法
GET /hotel/_search
{"query": {"match": {"FIELD": "TEXT" // 查询条件,高亮一定要使用全文检索查询}},"highlight": {"fields": { // 指定要高亮的字段"FIELD": {"pre_tags": "<em>",  // 用来标记高亮字段的前置标签"post_tags": "</em>" // 用来标记高亮字段的后置标签}}}
}
  • 注意:

    • 高亮是对关键字高亮,因此搜索条件必须带有关键字,而不能是范围这样的查询。
    • 默认情况下,高亮的字段,必须与搜索指定的字段一致,否则无法高亮
    • 如果要对非搜索字段高亮,则需要添加一个属性:required_field_match=false
  • 示例

在这里插入图片描述

4. 总结

  • 查询的 DSL 是一个大的 JSON 对象,包含下列属性:

    • query:查询条件
    • from 和 size:分页条件
    • sort:排序条件
    • highlight:高亮条件
  • 示例:

在这里插入图片描述

相关文章:

SpringCloud 微服务全栈体系(十七)

第十一章 分布式搜索引擎 elasticsearch 七、搜索结果处理 搜索的结果可以按照用户指定的方式去处理或展示。 1. 排序 elasticsearch 默认是根据相关度算分&#xff08;_score&#xff09;来排序&#xff0c;但是也支持自定义方式对搜索结果排序。可以排序字段类型有&#…...

基于ThinkPHP8 + Vue3 + element-ui-plus + 微信小程序(原生) + Vant2 的 BBS论坛系统设计【PHP课设】

一、BBS论坛功能描述 我做的是一个论坛类的网页项目&#xff0c;每个用户可以登录注册查看并发布文章&#xff0c;以及对文章的点赞和评论&#xff0c;还有文件上传和个人签名发布和基础信息修改&#xff0c;管理员对网站的数据进行统计&#xff0c;对文章和文件的上传以及评论…...

苹果cms搭建教程附带免费模板

准备工作: 一台服务器域名源码安装好NGINX+PHP7.0+MYSQL5.5 安装php7.0的扩展,fileinfo和 sg11,不安装网站会搭建失败。 两个扩展都全部安装好了之后 点击-服务-重载配置 这样我们的网站环境就配置完成啦 下载苹果cms 苹果cms程序github链接:选择mac10!下载即可 http…...

【LeetCode:828. 统计子串中的唯一字符 | 贡献法 乘法原理】

&#x1f680; 算法题 &#x1f680; &#x1f332; 算法刷题专栏 | 面试必备算法 | 面试高频算法 &#x1f340; &#x1f332; 越难的东西,越要努力坚持&#xff0c;因为它具有很高的价值&#xff0c;算法就是这样✨ &#x1f332; 作者简介&#xff1a;硕风和炜&#xff0c;…...

字符串和内存函数(2)

文章目录 2.13 memcpy2.14 memmove2.15 memcmp2.16 memset 2.13 memcpy void* memcpy(void* destination, const void* source, size_t num); 函数memcpy从source的位置开始向后复制num个字节的数据到destination的内存位置。这个函数在遇到 ‘\0’ 的时候并不会停下来。如果so…...

毅速:复杂零件制造首选3D打印

确金属3D打印技术在制造行业的应用日益广泛&#xff0c;为制造业带来了巨大的变革和机遇。这种增材制造技术相较于传统制造工艺具有许多优势&#xff0c;尤其在制造复杂形状零件方面表现出色。 传统制造工艺在制造复杂形状零件时往往面临诸多挑战&#xff0c;如加工难度大、周期…...

【数据中台】开源项目(2)-Moonbox计算服务平台

Moonbox是一个DVtaaS&#xff08;Data Virtualization as a Service&#xff09;平台解决方案。 Moonbox基于数据虚拟化设计思想&#xff0c;致力于提供批量计算服务解决方案。Moonbox负责屏蔽底层数据源的物理和使用细节&#xff0c;为用户带来虚拟数据库般使用体验&#xff0…...

代理模式(常用)

代理模式&#xff08;代理设计模式&#xff09; 在有些情况下&#xff0c;一个客户不能或者不想直接访问另一个对象&#xff0c;这时需要找一个中介帮忙完成某项任务&#xff0c;这个中介就是代理对象。例如&#xff0c;购买火车票不一定要去火车站买&#xff0c;可以通过 123…...

redis(Remote Dictionary Service) 底层数据结构

redis 底层数据结构 动态字符串SDS 优点 获取字符串长度的时间复杂度O(1) 支持动态扩容&#xff0c;减少内存分配次数 新字符串小于1M – 新空间为扩展后字符串长度的两倍 1 新字符串大于1M – 新空间为扩展后字符串长度 1M 1. 内存预分配 二进制安全&#xff08;记录了…...

电子学会C/C++编程等级考试2021年06月(三级)真题解析

C/C++等级考试(1~8级)全部真题・点这里 第1题:数对 给定2到15个不同的正整数,你的任务是计算这些数里面有多少个数对满足:数对中一个数是另一个数的两倍。 比如给定1 4 3 2 9 7 18 22,得到的答案是3,因为2是1的两倍,4是2个两倍,18是9的两倍。 时间限制:1000 内存限制…...

冥想第九百八十五天

1.周四&#xff0c;最近几天刷题的节奏太紧张了&#xff0c;放松一点&#xff0c;不能太大压力了&#xff0c;认证看&#xff0c;慢慢看效果会更好一点。 2.发现了一个跑步比较好的地方&#xff0c;沿着凯旋路&#xff0c;然后昭化路&#xff0c;种德桥路。一圈&#xff0c;刚好…...

Qt OpenGL固定管线与可编程管线

作者:令狐掌门 技术交流QQ群:675120140 csdn博客:https://mingshiqiang.blog.csdn.net/ 文章目录 在Qt框架中,你可以使用Qt的OpenGL模块(包括QOpenGLWidget和QOpenGLFunctions等类)来使用OpenGL进行图形渲染。以下是一个简单的示例,展示了如何在Qt应用程序中使用OpenGL绘…...

冯·诺依曼体系结构和操作系统

目录 一、冯诺依曼体系结构 1、初见结构 2、对体系结构的理解 3、总结 二、操作系统 1、概念 2、作用 一、冯诺依曼体系结构 1、初见结构 数学家冯诺依曼提出了计算机制造的三个基本原则&#xff0c;即采用二进制逻辑、程序存储执行以及计算机由五个部分组成&#xff08…...

Nginx(资源压缩)

建立在动静分离的基础之上&#xff0c;如果一个静态资源的Size越小&#xff0c;那么自然传输速度会更快&#xff0c;同时也会更节省带宽&#xff0c;因此我们在部署项目时&#xff0c;也可以通过Nginx对于静态资源实现压缩传输&#xff0c;一方面可以节省带宽资源&#xff0c;第…...

数据结构与算法之二叉树: LeetCode 226. 翻转二叉树 (Typescript版)

翻转二叉树 https://leetcode.cn/problems/invert-binary-tree/ 描述 给你一棵二叉树的根节点 root &#xff0c;翻转这棵二叉树&#xff0c;并返回其根节点。 示例 1 4 4/ \ / \2 7 >…...

lightdb-ignore_row_on_dupkey_index

LightDB 支持 ignore_row_on_dupkey_index hint LightDB 从23.4 开始支持oracle的 ignore_row_on_dupkey_index hint&#xff0c; 这个hint是用来忽略唯一键冲突的。类似与mysql的 insert ignore。 语法如下&#xff1a; 在LightDB中ignore_row_on_dupkey_index的效果等同于o…...

wangeditor实时预览

<template><div><!--挂载富文本编辑器--><div style"width: 45%;float: left;margin-left: 2%"><p>编辑内容</p><div id"editor" style"height: 100%"></div></div><div style"w…...

【前沿技术了解】web图形Canvas、svg、WebGL、数据可视化引擎的技术选型

目录 Canvas&#xff1a;HTML5新增 Canvas标签&#xff08;画布&#xff09; 渲染上下文canvas.getContext(contextType[, contextAttributes]) 上下文类型&#xff08;contextType&#xff09; 上下文属性 (contextAttributes) 示例 动画 setInterval(function, delay)…...

【Java】循环语句练习

文章目录 1. 计算5的阶乘2. 计算 1! 2! 3! 4! 5!3. 数字9 出现的次数4. 判定素数5. 求1-100之间的素数6. 求2个整数的最大公约数7. 计算分数的值8. 模拟登陆9. 输出乘法口诀表10. 求出0&#xff5e;999之间的所有“水仙花数”并输出11. 猜数字游戏&#x1f648; 1. 计算5的…...

「Verilog学习笔记」非整数倍数据位宽转换24to128

专栏前言 本专栏的内容主要是记录本人学习Verilog过程中的一些知识点&#xff0c;刷题网站用的是牛客网 要实现24bit数据至128bit数据的位宽转换&#xff0c;必须要用寄存器将先到达的数据进行缓存。24bit数据至128bit数据&#xff0c;相当于5个输入数据第6个输入数据的拼接成一…...

多模态2025:技术路线“神仙打架”,视频生成冲上云霄

文&#xff5c;魏琳华 编&#xff5c;王一粟 一场大会&#xff0c;聚集了中国多模态大模型的“半壁江山”。 智源大会2025为期两天的论坛中&#xff0c;汇集了学界、创业公司和大厂等三方的热门选手&#xff0c;关于多模态的集中讨论达到了前所未有的热度。其中&#xff0c;…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

脑机新手指南(八):OpenBCI_GUI:从环境搭建到数据可视化(下)

一、数据处理与分析实战 &#xff08;一&#xff09;实时滤波与参数调整 基础滤波操作 60Hz 工频滤波&#xff1a;勾选界面右侧 “60Hz” 复选框&#xff0c;可有效抑制电网干扰&#xff08;适用于北美地区&#xff0c;欧洲用户可调整为 50Hz&#xff09;。 平滑处理&…...

阿里云ACP云计算备考笔记 (5)——弹性伸缩

目录 第一章 概述 第二章 弹性伸缩简介 1、弹性伸缩 2、垂直伸缩 3、优势 4、应用场景 ① 无规律的业务量波动 ② 有规律的业务量波动 ③ 无明显业务量波动 ④ 混合型业务 ⑤ 消息通知 ⑥ 生命周期挂钩 ⑦ 自定义方式 ⑧ 滚的升级 5、使用限制 第三章 主要定义 …...

DAY 47

三、通道注意力 3.1 通道注意力的定义 # 新增&#xff1a;通道注意力模块&#xff08;SE模块&#xff09; class ChannelAttention(nn.Module):"""通道注意力模块(Squeeze-and-Excitation)"""def __init__(self, in_channels, reduction_rat…...

Leetcode 3577. Count the Number of Computer Unlocking Permutations

Leetcode 3577. Count the Number of Computer Unlocking Permutations 1. 解题思路2. 代码实现 题目链接&#xff1a;3577. Count the Number of Computer Unlocking Permutations 1. 解题思路 这一题其实就是一个脑筋急转弯&#xff0c;要想要能够将所有的电脑解锁&#x…...

全球首个30米分辨率湿地数据集(2000—2022)

数据简介 今天我们分享的数据是全球30米分辨率湿地数据集&#xff0c;包含8种湿地亚类&#xff0c;该数据以0.5X0.5的瓦片存储&#xff0c;我们整理了所有属于中国的瓦片名称与其对应省份&#xff0c;方便大家研究使用。 该数据集作为全球首个30米分辨率、覆盖2000–2022年时间…...

对WWDC 2025 Keynote 内容的预测

借助我们以往对苹果公司发展路径的深入研究经验&#xff0c;以及大语言模型的分析能力&#xff0c;我们系统梳理了多年来苹果 WWDC 主题演讲的规律。在 WWDC 2025 即将揭幕之际&#xff0c;我们让 ChatGPT 对今年的 Keynote 内容进行了一个初步预测&#xff0c;聊作存档。等到明…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具&#xff0c;可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下&#xff1a; ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜&#xff1a; ffmpeg…...

Spring Boot面试题精选汇总

&#x1f91f;致敬读者 &#x1f7e9;感谢阅读&#x1f7e6;笑口常开&#x1f7ea;生日快乐⬛早点睡觉 &#x1f4d8;博主相关 &#x1f7e7;博主信息&#x1f7e8;博客首页&#x1f7eb;专栏推荐&#x1f7e5;活动信息 文章目录 Spring Boot面试题精选汇总⚙️ **一、核心概…...