当前位置: 首页 > news >正文

C++类与对象(6)—初始化列表、explicit关键字、static成员

目录

一、初始化列表 

1、定义 

2、注意事项

3、尽量使用初始化列表初始化

4、初始化顺序

二、 explicit关键字

1、定义

2、特点

三、static成员

1、定义 

2、特性 

3、例题


一、初始化列表 

下面这段代码可以正常编译:

class A {
private:int _a1;//成员声明int _a2;
};
int main()
{A a;//对象整体定义return 0;
}

如果加上一个const类型的成员变量_x,编译就无法通过。 

class A {
private:int _a1;int _a2;const int _x;
};
int main()
{A a;return 0;
}

这是因为const变量必须在定义的位置初始化,否则编译不通过。

class A {
private:int _a1;//声明int _a2;const int _x;
};

在private作用域中,const变量和两个int变量都是成员变量的声明,如果我们声明const变量,一定要对它进行定义,那我们在哪定义呢?

C++11之后可以在声明位置为变量赋初值。

const int _x = 0;

那在C++11之前,也有解决方法,给每个成员变量找一个位置对其进行定义,这样就解决了变量初始化的问题,这个位置使用初始化列表进行初始化赋值。

1、定义 

初始化列表:以一个冒号开始,接着是一个以逗号分隔的数据成员列表,每个"成员变量"后面跟一个放在括号中的初始值或表达式。
这样就解决了const成员变量初始化问题。
class A {
public:A():_x(1){}
private:int _a1;int _a2;const int _x;
};
int main()
{A a;return 0;
}

只要对象调用构造函数,初始化列表是它所有成员变量定义的位置。
不管是否显示在初始化列表写,那么编译器每个变量都会初始化列表定义初始化。

class A {
public:A():_x(1),_a1(6){}
private:int _a1 = 1;int _a2 = 2;const int _x;
};
int main()
{A a;return 0;
}

在初始化列表中初始化的变量,不使用缺省值;没有使用初始化列表的变量,使用缺省值。 

2、注意事项

  1. 每个成员变量在初始化列表中只能出现一次(初始化只能初始化一次)
  2. 类中包含以下成员,必须放在初始化列表位置进行初始化:
  • 引用成员变量
  • const成员变量
  • 自定义类型成员(且该类没有默认构造函数时)
class B {
public:B():_b(0){cout << "B()" << endl;}
private:int _b;
};class A {
private:B _bb;
};
int main()
{A aa;return 0;
}

 这里的aa的成员变量自定义类型_bb是可以调用它的默认构造函数的初始化列表进行初始化。

 默认构造可以是无参或全缺省的。

class B {
public:B(int n) :_b(0)//会报错B(int n=9) :_b(0)//全缺省B( ) :_b(0)//无参
private:int _b;
};

3、尽量使用初始化列表初始化

因为不管你是否使用初始化列表,对于自定义类型成员变量, 一定会先使用初始化列表初始化。

 下面看一个用两个栈实现的队列。

typedef int DataType;
class Stack
{
public:Stack(size_t capacity = 10){cout << "Stack(size_t capacity = 10)" << endl;_array = (DataType*)malloc(capacity * sizeof(DataType));if (nullptr == _array){perror("malloc申请空间失败");exit(-1);}_size = 0;_capacity = capacity;}void Push(const DataType& data){_array[_size] = data;_size++;}Stack(const Stack& st){cout << "Stack(const Stack& st)" << endl;_array = (DataType*)malloc(sizeof(DataType)*st._capacity);if (nullptr == _array){perror("malloc申请空间失败");exit(-1);}memcpy(_array, st._array, sizeof(DataType)*st._size);_size = st._size;_capacity = st._capacity;}~Stack(){cout << "~Stack()" << endl;if (_array){free(_array);_array = nullptr;_capacity = 0;_size = 0;}}private:DataType *_array;size_t    _size;size_t    _capacity;
};class MyQueue
{
public:MyQueue(int pushN, int popN):_pushST(pushN), _popST(popN){}private:Stack _pushST;Stack _popST;int _size = 0;
};int main()
{	MyQueue q(2, 3);return 0;
}

在调试中可以看到,这里的23分别作为参数传递给MyQueue的构造函数,通过初始化列表对这两个成员变量进行初始化。

 如果我们使用这种无参的构造函数对MyQueue对象初始化呢?

class MyQueue
{
public:MyQueue(){}private:Stack _pushST;Stack _popST;int _size = 0;
};

可以看到,如果我们不写初始化列表,MyQueue类也可以调用Stack的默认构造函数对两个Stack类的对象进行初始化,不写MyQueue的构造函数也会使用同样方式初始化,本质上一样。

4、初始化顺序

成员变量在类中声明次序就是其在初始化列表中的初始化顺序,与其在初始化列表中的先后次序无关。

class A{
public:A(int a):_a1(a), _a2(_a1){}void Print() {cout << _a1 << " " << _a2 << endl;}
private:int _a2;int _a1;
};int main() {A aa(1);aa.Print();
}

_a2比_a1先声明,所以_a2比_a1先在初始化列表中初始化,_a2初始化时_a1还没初始化,所以_a2是随机值。

二、 explicit关键字

class A {
public:A(int a):_a1(a){}
private:int _a2;int _a1;
};
int main()
{A aa1(1);	//构造函数A aa2 = 1;	//隐式类型转换int i = 1;	double d = i;//隐式类型转换return 0;
}

默认情况下,这里的隐式类型转换都会借助额外创建的临时变量实现,通过构造创建临时变量,然后拷贝构造给变量赋值的过程被优化为直接构造,下一篇文章详细讲解优化过程。

在这两种情况下,临时变量的创建是为了完成类型转换的过程。这些临时变量在转换完成后会被销毁,对于程序的其他部分是不可见的。这种临时变量的创建和销毁是由编译器自动处理的,无需手动干预。

  • A aa2 = 1; 这里发生了从int到A的隐式类型转换。编译器会自动调用A类的构造函数来创建一个临时的A对象,然后将整数值1传递给构造函数作为参数。这个临时的A对象会被复制到aa2中,完成隐式类型转换。

  • double d = i; 这里发生了从int到double的隐式类型转换。编译器会创建一个临时的double变量,并将整数变量i的值复制到这个临时变量中。然后,这个临时的double变量的值会被赋给变量d,完成隐式类型转换。

拷贝构造也属于构造,也可以使用初始化列表,但下面的成员变量会调用拷贝构造吗?

class A
{
public:A(int a):_a1(a){cout << "A(int a)" << endl;}A(const A& aa):_a1(aa._a1){cout << "A(const A& aa)" << endl;}private:int _a2;int _a1;
};int main()
{A aa1(1);	//构造函数A aa2 = 1;	//隐式类型转换return 0;
}

输出结果发现没有调用引用类型的拷贝构造。

 

这是因为C++中编译器会对自定义类型的进行优化, 将构造+拷贝+优化的过程优化成一个构造。

那下面的代码中,为什么第一个会报错,第二个没问题呢? 

A& ref = 10;
const A& ref = 10;
  • 这是因为在C++中,当你声明一个引用(比如 A& ref)并试图将其初始化为一个右值(比如一个临时对象或一个字面量),编译器通常会报错。这是因为非const引用不能绑定到右值上,防止对临时对象的非常量引用,因为这可能导致对临时对象的意外修改,从而导致不确定的行为。但是,当你声明一个常量引用(比如 const A& ref),编译器允许这种绑定,因为常量引用可以绑定到右值上。
  • 在上述代码中,const A& ref = 10; 这行代码中的 10 是一个整数字面量,是一个右值。你尝试将这个右值绑定到引用 ref 上。由于 ref 被声明为 const A&,它是一个常量引用,所以编译器允许这种绑定,并调用 A 类的构造函数 A(int a) 来创建一个临时的 A 对象,然后将 ref 绑定到这个临时对象上。

1、定义

构造函数不仅可以构造与初始化对象,对于单个参数或者除第一个参数无默认值其余均有默认值
的构造函数,还具有类型转换的作用。
对于单参构造函数:没有使用explicit修饰,具有类型转换作用
explicit修饰构造函数,禁止类型转换---explicit去掉之后,代码可以通过编译。

 对于刚刚的代码,如果在构造函数前加explicit程序会怎么样呢?

class A{
public:explicit A(int a):_a1(a){cout << "A(int a)" << endl;}A(const A& aa):_a1(aa._a1){cout << "A(const A& aa)" << endl;}private:int _a2;int _a1;
};
int main()
{A aa1(1);	//构造函数A aa2 = 1;	//隐式类型转换const A& ref = 10;return 0;
}

 这两段代码会报错,程序禁止类型转换。

 

2、特点

class A
{
public://explicit A(int a)A(int a):_a1(a){cout << "A(int a)" << endl;}//explicit A(int a1, int a2)A(int a1, int a2):_a1(a1), _a2(a2){}private:int _a2;int _a1;
};
int main()
{// 单参数构造函数 C++98A aa1(1);	//构造函数A aa2 = 1;	//隐式类型转换// 多参数构造函数 C++11A aa2(1, 1);//A aa3= 2,2;//C98不支持A aa3 = { 2, 2 };//C++11支持return 0;
}
  1. A aa1(1); 这是直接调用单参数构造函数创建对象的例子。

  2. A aa2 = 1; 这是一个隐式类型转换的例子。这里,整数1被隐式地转换为类A的一个对象。这是因为类A定义了一个接受int类型参数的构造函数,因此编译器会自动调用该构造函数来创建一个临时的A对象,并将其赋值给aa2。

  3. A aa2(1, 1); 这是直接调用双参数构造函数创建对象的例子。

  4. A aa3 = { 2, 2 }; 这是C++11引入的列表初始化的例子。这种方式可以用来初始化对象,而不需要显式地调用构造函数。

explicit关键字用于阻止编译器进行不希望发生的隐式类型转换。如果你将构造函数前面的注释去掉,使得构造函数前面有explicit关键字,那么像A aa2 = 1;这样的隐式类型转换就会被禁止,编译器会报错。

例如,如果你将单参数构造函数改为explicit A(int a),那么A aa2 = 1;这行代码就会导致编译错误,因为编译器被禁止进行从int到A的隐式类型转换。你必须显式地调用构造函数,像A aa2(1);这样。

总的来说,explicit关键字可以帮助你控制类型转换,防止因为不希望的隐式类型转换而导致的错误。

三、static成员

实现一个类,计算程序中创建了多少类对象

int count = 0;
class A
{
public:A(int a = 0){++count;}A(const A& aa){++count;}
};
void func(A a)
{}
int main()
{A aa1;A aa2(aa1);func(aa1);A aa3 = 1;cout << count << endl;return 0;
}

造成了命名冲突的问题,因为C++的xutility文件里有个函数count与我们定义的全局变量count冲突了。

我们可以不展开std,只调用需要用的流输入输出即可。

#include <iostream>
//using namespace std;
using std::cout;
using std::endl;

成功输出: 

C++为了解决上述问题,同时可以将std展开,将count作为类的static修饰的成员即可实现。

1、定义 

  • 声明为static的类成员称为类的静态成员,用static修饰的成员变量,称之为静态成员变量;
  • 用static修饰的成员函数,称之为静态成员函数。
  • 静态成员变量一定要在类外进行初始化。
  • 静态成员不属于某个对象,所于所有对象,属于整个类。
  • 静态成员变量的初始化通常在类外部进行。
class A
{
public:A(int a = 0){++count;}A(const A& aa){++count;}int Getcount(){return count;}
private:static int count; // 此处为声明int _a = 0;
};int A::count = 0; // 定义初始化void func(A a)
{}

当我们想输出时:

int main()
{A aa1;A aa2(aa1);func(aa1);A aa3 = 1;cout << A::Getcount() << endl;return 0;
}
输出语句会报错:
如果想要输出,可以使用静态成员函数。
	//静态成员函数 没有this指针static int Getcount(){// _a++; // 不能直接访问非静态成员return count;}

成功输出:

下面语句创建出了多少个类对象?
A aa4[10];

输出结果:

2、特性 

  • 静态成员为所有类对象所共享,不属于某个具体的对象,存放在静态区
  • 静态成员变量必须在类外定义,定义时不添加static关键字,类中只是声明
  • 类静态成员即可用 类名::静态成员 或者 对象.静态成员 来访问
  • 静态成员函数没有隐藏的this指针,不能访问任何非静态成员
  • 静态成员也是类的成员,受public、protected、private 访问限定符的限制

3、例题

链接如下:

求1+2+3+...+n_牛客题霸_牛客网 (nowcoder.com)

  • 下面这段代码实现了一个类 Sum 和一个类 Solution,其中 Sum 类用于计算从1到n的累加和,而 Solution 类则使用 Sum 类来计算给定整数n的累加和。 
  • 这种设计利用了类的构造函数和静态成员变量的特性,实现了累加和的计算和获取。
class Sum{
public:Sum(){_sum+=_i;_i++;}static int Getsum(){return _sum;}
private:static int _sum;static int _i;
};
int Sum::_sum = 0;
int Sum::_i = 1;
class Solution {
public:int Sum_Solution(int n) {Sum a[n];return Sum::Getsum();}
};

首先,让我们逐步解释 Sum 类的实现:

  • Sum 类有两个静态成员变量 _sum 和 _i,分别用于保存累加和和当前的计数器值。
  • 构造函数 Sum() 是一个无参构造函数,每次被调用时,它会将当前计数器值 _i 加到累加和 _sum 中,并将计数器 _i 自增1。
  • 静态成员函数 Getsum() 用于获取累加和 _sum 的值。

接下来,我们来看 Solution 类的实现:

  • Solution 类中的成员函数 Sum_Solution(int n) 接受一个整数 n 作为参数,并返回从1到n的累加和。
  • 在 Sum_Solution 函数中,我们创建了一个名为 a 的 Sum 类型的数组,数组的大小为 n
  • 由于 Sum 类的构造函数会在创建对象时自动调用,因此创建数组 a 的过程中,会依次调用 Sum 类的构造函数,从而实现了从1到n的累加和的计算。
  • 最后,我们通过调用 Sum::Getsum() 函数来获取累加和的值,并将其作为函数的返回值。

相关文章:

C++类与对象(6)—初始化列表、explicit关键字、static成员

目录 一、初始化列表 1、定义 2、注意事项 3、尽量使用初始化列表初始化 4、初始化顺序 二、 explicit关键字 1、定义 2、特点 三、static成员 1、定义 2、特性 3、例题 一、初始化列表 下面这段代码可以正常编译&#xff1a; class A { private:int _a1;//成员…...

vue3+tsx的使用

<template><div><xiaoman on-click"getItem" name"似懂非懂"></xiaoman></div> </template><script setup langts>import xiaoman from "./App"const getItem(item:any)>{console.log(item,it…...

JMeter 设置请求头信息的详细步骤

在使用 JMeter 的过程中&#xff0c;我们会遇到需要设置请求头信息的场景。比如&#xff1a; POST 传过去的 Body 数据是 json 格式的。需要填添加头信息&#xff1a;Content-Type&#xff1a;application/json。 在 header 中用 token 来传用户的认证信息。 下面&#xff0c;…...

从零构建属于自己的GPT系列1:预处理模块

1 训练数据 在本任务的训练数据中&#xff0c;我选择了金庸的15本小说&#xff0c;全部都是txt文件 数据打开后的样子 2 数据预处理 数据预处理需要做的事情就是使用huggingface的transformers包的tokenizer模块&#xff0c;将文本转化为token 最后生成的文件就是train_n…...

002、ArkTS

之——开发语言 目录 之——开发语言 杂谈 正文 1.TypeScript基础 1.1 基础类型 1.2 条件语句 1.3 函数 1.4 类 1.5 模块 1.6 迭代器 2.ArkTS 2.1 JAVA SCRIPT 2.2 TS 2.3 ArkTS ​编辑 3.示例 3.1 概述性示例 3.2 自定义组件 3.3 渲染控制语法 3.4 状态管…...

如何通过nginx进行服务的负载均衡

简单介绍 随着互联网的发展&#xff0c;业务流量越来越大并且业务逻辑也越来越复杂&#xff0c;单台服务器的性能及单点故障问题就凸显出来了&#xff0c;因此需要多台服务器组成应用集群&#xff0c;进行性能的水平扩展以及避免单点故障的出现。应用集群是将同一应用部署到多台…...

FPGA程序前仿真和后仿真问题处理

参考链接&#xff1a;FPGA程序前仿真和后仿真问题处理 - 知乎...

C语言WFC绘制矩形

代码实现&#xff1a; void CCGDrawingView::Rectangle(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4, COLORREF color,CDC* pDC) {CPen redPen(PS_SOLID, 1, color);CBrush redBursh(color);CPen* pOldPen pDC->SelectObject(&redPen);CBrush* p…...

SpringCloud Alibaba集成 Gateway(自定义负载均衡器)、Nacos(配置中心、注册中心)、loadbalancer

文章目录 POM依赖环境准备配置配置文件配置类 案例展示 POM依赖 <parent><groupId>org.springframework.boot</groupId><artifactId>spring-boot-starter-parent</artifactId><version>2.7.10</version><relativePath/></p…...

HarmonyOS应用开发者基础认证【题库答案】

HarmonyOS应用开发者高级认证【题库答案】 一、判断 首选项preferences是以Key-Value形式存储数据&#xff0c;其中Key是可以重复。&#xff08;错&#xff09;使用http模块发起网络请求时&#xff0c;必须要使用on(‘headersReceive’&#xff09;订阅请求头&#xff0c;请…...

[pyqt5]pyqt5设置窗口背景图片后上面所有图片都会变成和背景图片一样

pyqt5的控件所有都是集成widget&#xff0c;窗体设置背景图片后控件背景也会跟着改变&#xff0c;此时有2个办法。第一个办法显然我们可以换成其他方式设置窗口背景图片&#xff0c;而不是使用styleSheet样式表&#xff0c;网上有很多其他方法。还有个办法就是仍然用styleSheet…...

【Docker】从零开始:7.Docker命令:容器命令及参数详解

【Docker】从零开始&#xff1a;7.帮助启动类命令 一、帮助启动类命令启动Docker停止Docker重启Docker查看Docker状态开机启动查看docker概要信息查看docker总体帮助文档查看docker命令帮助文档 二、镜像命令列出本地主机上的镜像运行示例返回说明操作参数 搜索仓库里的某个镜像…...

Mysql 锁机制分析

整体业务代码精简逻辑如下&#xff1a; Transaction public void service(Integer id) {delete(id);insert(id); }数据库实例监控&#xff1a; 当时通过分析上游问题流量限流解决后&#xff0c;后续找时间又重新分析了下问题发生的根本原因&#xff0c;现将其总结如下&#xf…...

跟着chatgpt学习|1.spark入门

首先先让chatgpt帮我规划学习路径&#xff0c;使用Markdown格式返回&#xff0c;并转成思维导图的形式 目录 目录 1. 了解spark 1.1 Spark的概念 1.2 Spark的架构 1.3 Spark的基本功能 2.spark中的数据抽象和操作方式 2.1.RDD&#xff08;弹性分布式数据集&#xff09; 2…...

使用conan包 - 安装依赖项

使用conan包 - 安装依赖项 主目录 conan Using packages1 Requires2 Optional user/channel3 Overriding requirements4 Generators5 Options 本文是基于对conan官方文档Installing dependencies的翻译而来&#xff0c; 更详细的信息可以去查阅conan官方文档。 This section s…...

【数据库设计和SQL基础语法】--数据库设计基础--数据规范化和反规范化

一、 数据规范化 1.1 数据规范化的概念 定义 数据规范化是数据库设计中的一种方法&#xff0c;通过组织表结构&#xff0c;减少数据冗余&#xff0c;提高数据一致性和降低更新异常的过程。这一过程确保数据库中的数据结构遵循一定的标准和规范&#xff0c;使得数据存储更加高…...

复亚智能交通无人机:智慧交通解决方案大公开

城市的现代化发展离不开高效的交通管理规划。传统的交通管理系统庞大繁琐&#xff0c;交警在执行任务时存在安全隐患。在这一背景下&#xff0c;复亚智能交通无人机应运而生&#xff0c;成为智慧交通管理中的重要组成部分。交通无人机凭借其高灵活性、低成本、高安全性等特点&a…...

MYSQL 及 SQL 注入

文章目录 前言什么是sql注入防止SQL注入Like语句中的注入后言 前言 hello world欢迎来到前端的新世界 &#x1f61c;当前文章系列专栏&#xff1a;Mysql &#x1f431;‍&#x1f453;博主在前端领域还有很多知识和技术需要掌握&#xff0c;正在不断努力填补技术短板。(如果出现…...

古埃及金字塔的修建

从理论上说&#xff0c;古埃及人完全有能力设计并建造出充满各种奇妙细节的胡夫金字塔&#xff0c;但后世还是不断涌现出质疑之声&#xff0c;原因倒也简单&#xff0c;那就是胡夫金字塔实在太大了。据推算&#xff0c;整座金字塔使用大约230万块巨石&#xff0c;总质量可达约5…...

Android 13.0 系统settings系统属性控制一级菜单显示隐藏

1.概述 在13.0的系统rom定制化开发中,系统settings的一级菜单有些在客户需求中需要去掉不显示,所以就需要通过系统属性来控制显示隐藏, 从而达到控制一级菜单的显示的目的,而系统settings是通过静态加载的方式负责显示隐藏,接下来就来实现隐藏显示一级菜单的 功能实现 2.…...

地震勘探——干扰波识别、井中地震时距曲线特点

目录 干扰波识别反射波地震勘探的干扰波 井中地震时距曲线特点 干扰波识别 有效波&#xff1a;可以用来解决所提出的地质任务的波&#xff1b;干扰波&#xff1a;所有妨碍辨认、追踪有效波的其他波。 地震勘探中&#xff0c;有效波和干扰波是相对的。例如&#xff0c;在反射波…...

【大模型RAG】Docker 一键部署 Milvus 完整攻略

本文概要 Milvus 2.5 Stand-alone 版可通过 Docker 在几分钟内完成安装&#xff1b;只需暴露 19530&#xff08;gRPC&#xff09;与 9091&#xff08;HTTP/WebUI&#xff09;两个端口&#xff0c;即可让本地电脑通过 PyMilvus 或浏览器访问远程 Linux 服务器上的 Milvus。下面…...

MVC 数据库

MVC 数据库 引言 在软件开发领域,Model-View-Controller(MVC)是一种流行的软件架构模式,它将应用程序分为三个核心组件:模型(Model)、视图(View)和控制器(Controller)。这种模式有助于提高代码的可维护性和可扩展性。本文将深入探讨MVC架构与数据库之间的关系,以…...

【Nginx】使用 Nginx+Lua 实现基于 IP 的访问频率限制

使用 NginxLua 实现基于 IP 的访问频率限制 在高并发场景下&#xff0c;限制某个 IP 的访问频率是非常重要的&#xff0c;可以有效防止恶意攻击或错误配置导致的服务宕机。以下是一个详细的实现方案&#xff0c;使用 Nginx 和 Lua 脚本结合 Redis 来实现基于 IP 的访问频率限制…...

嵌入式学习之系统编程(九)OSI模型、TCP/IP模型、UDP协议网络相关编程(6.3)

目录 一、网络编程--OSI模型 二、网络编程--TCP/IP模型 三、网络接口 四、UDP网络相关编程及主要函数 ​编辑​编辑 UDP的特征 socke函数 bind函数 recvfrom函数&#xff08;接收函数&#xff09; sendto函数&#xff08;发送函数&#xff09; 五、网络编程之 UDP 用…...

软件工程 期末复习

瀑布模型&#xff1a;计划 螺旋模型&#xff1a;风险低 原型模型: 用户反馈 喷泉模型:代码复用 高内聚 低耦合&#xff1a;模块内部功能紧密 模块之间依赖程度小 高内聚&#xff1a;指的是一个模块内部的功能应该紧密相关。换句话说&#xff0c;一个模块应当只实现单一的功能…...

OCR MLLM Evaluation

为什么需要评测体系&#xff1f;——背景与矛盾 ​​ 能干的事&#xff1a;​​ 看清楚发票、身份证上的字&#xff08;准确率>90%&#xff09;&#xff0c;速度飞快&#xff08;眨眼间完成&#xff09;。​​干不了的事&#xff1a;​​ 碰到复杂表格&#xff08;合并单元…...

【HarmonyOS 5】鸿蒙中Stage模型与FA模型详解

一、前言 在HarmonyOS 5的应用开发模型中&#xff0c;featureAbility是旧版FA模型&#xff08;Feature Ability&#xff09;的用法&#xff0c;Stage模型已采用全新的应用架构&#xff0c;推荐使用组件化的上下文获取方式&#xff0c;而非依赖featureAbility。 FA大概是API7之…...

CSS3相关知识点

CSS3相关知识点 CSS3私有前缀私有前缀私有前缀存在的意义常见浏览器的私有前缀 CSS3基本语法CSS3 新增长度单位CSS3 新增颜色设置方式CSS3 新增选择器CSS3 新增盒模型相关属性box-sizing 怪异盒模型resize调整盒子大小box-shadow 盒子阴影opacity 不透明度 CSS3 新增背景属性ba…...

精益数据分析(98/126):电商转化率优化与网站性能的底层逻辑

精益数据分析&#xff08;98/126&#xff09;&#xff1a;电商转化率优化与网站性能的底层逻辑 在电子商务领域&#xff0c;转化率与网站性能是决定商业成败的核心指标。今天&#xff0c;我们将深入解析不同类型电商平台的转化率基准&#xff0c;探讨页面加载速度对用户行为的…...