当前位置: 首页 > news >正文

6.2 Windows驱动开发:内核枚举SSSDT表基址

在Windows内核中,SSSDT(System Service Shadow Descriptor Table)是SSDT(System Service Descriptor Table)的一种变种,其主要用途是提供Windows系统对系统服务调用的阴影拷贝。SSSDT表存储了系统调用的函数地址,类似于SSDT表,但在某些情况下,Windows系统会使用SSSDT表来对系统服务进行引导和调用。

SSSDT表的存在是为了加强系统的安全性和稳定性。通过使用SSSDT表,操作系统可以在运行时检查系统服务的合法性,并确保其不被非法修改。这有助于防止恶意软件或恶意行为修改系统服务地址,提高系统的整体安全性。

在笔者上一篇文章《枚举完整SSDT地址表》实现了针对SSDT表的枚举功能,本章继续实现对SSSDT表的枚举,ShadowSSDT中文名影子系统服务描述表,SSSDT其主要的作用是管理系统中的图形化界面,其Win32子系统的内核实现是Win32k.sys驱动,属于GUI线程的一部分,其自身没有导出表,枚举SSSDT表其与SSDT原理基本一致。

如下是闭源ARK工具的枚举效果:

首先需要找到SSSDT表的位置,通过《Win10内核枚举SSDT表基址》文章中的分析可知,SSSDT就在SSDT的下面,只需要枚举4c8d1dde1e3a00特征即可,如果你找不到上一篇具体分析流程了,那么多半你是看到了转载文章。

先实现第一个功能,得到SSSDT表的基地址以及SSDT函数个数,完整代码如下所示。

#include <ntifs.h>
#pragma intrinsic(__readmsr)typedef struct _SYSTEM_SERVICE_TABLE
{PVOID          ServiceTableBase;PVOID          ServiceCounterTableBase;ULONGLONG      NumberOfServices;PVOID          ParamTableBase;
} SYSTEM_SERVICE_TABLE, *PSYSTEM_SERVICE_TABLE;PSYSTEM_SERVICE_TABLE KeServiceDescriptorTableShadow = 0;
ULONG64 ul64W32pServiceTable = 0;// 获取 KeServiceDescriptorTableShadow 首地址
ULONGLONG GetKeServiceDescriptorTableShadow()
{// 设置起始位置PUCHAR StartSearchAddress = (PUCHAR)__readmsr(0xC0000082) - 0x1808FE;// 设置结束位置PUCHAR EndSearchAddress = StartSearchAddress + 0x8192;// DbgPrint("扫描起始地址: %p --> 扫描结束地址: %p \n", StartSearchAddress, EndSearchAddress);PUCHAR ByteCode = NULL;UCHAR OpCodeA = 0, OpCodeB = 0, OpCodeC = 0;ULONGLONG addr = 0;ULONG templong = 0;for (ByteCode = StartSearchAddress; ByteCode < EndSearchAddress; ByteCode++){// 使用MmIsAddressValid()函数检查地址是否有页面错误if (MmIsAddressValid(ByteCode) && MmIsAddressValid(ByteCode + 1) && MmIsAddressValid(ByteCode + 2)){OpCodeA = *ByteCode;OpCodeB = *(ByteCode + 1);OpCodeC = *(ByteCode + 2);// 对比特征值 寻找 nt!KeServiceDescriptorTable 函数地址/*lyshark kd> u KiSystemServiceRepeatnt!KiSystemServiceRepeat:fffff802`7c1d2b94 4c8d15e59c3b00  lea     r10,[nt!KeServiceDescriptorTable (fffff802`7c58c880)]fffff802`7c1d2b9b 4c8d1dde1e3a00  lea     r11,[nt!KeServiceDescriptorTableShadow (fffff802`7c574a80)]fffff802`7c1d2ba2 f7437880000000  test    dword ptr [rbx+78h],80hfffff802`7c1d2ba9 7413            je      nt!KiSystemServiceRepeat+0x2a (fffff802`7c1d2bbe)fffff802`7c1d2bab f7437800002000  test    dword ptr [rbx+78h],200000hfffff802`7c1d2bb2 7407            je      nt!KiSystemServiceRepeat+0x27 (fffff802`7c1d2bbb)fffff802`7c1d2bb4 4c8d1d051f3a00  lea     r11,[nt!KeServiceDescriptorTableFilter (fffff802`7c574ac0)]fffff802`7c1d2bbb 4d8bd3          mov     r10,r11*/if (OpCodeA == 0x4c && OpCodeB == 0x8d && OpCodeC == 0x1d){// 获取高位地址fffff802memcpy(&templong, ByteCode + 3, 4);// 与低位64da4880地址相加得到完整地址addr = (ULONGLONG)templong + (ULONGLONG)ByteCode + 7;return addr;}}}return  0;
}// 得到SSSDT个数
ULONGLONG GetSSSDTCount()
{PSYSTEM_SERVICE_TABLE pWin32k;ULONGLONG W32pServiceTable;pWin32k = (PSYSTEM_SERVICE_TABLE)((ULONG64)KeServiceDescriptorTableShadow + sizeof(SYSTEM_SERVICE_TABLE));W32pServiceTable = (ULONGLONG)(pWin32k->ServiceTableBase);// DbgPrint("Count => %d \n", pWin32k->NumberOfServices);return pWin32k->NumberOfServices;
}VOID UnDriver(PDRIVER_OBJECT driver)
{DbgPrint(("驱动程序卸载成功! \n"));
}NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath)
{DbgPrint("hello lyshark \n");KeServiceDescriptorTableShadow = (PSYSTEM_SERVICE_TABLE)GetKeServiceDescriptorTableShadow();DbgPrint("[LyShark] SSSDT基地址 = 0x%p \n", KeServiceDescriptorTableShadow);ULONGLONG count = GetSSSDTCount();DbgPrint("[LyShark] SSSDT个数 = %d \n", count);DriverObject->DriverUnload = UnDriver;return STATUS_SUCCESS;
}

这段代码运行后即可得到SSSDT表基地址,以及该表中函数个数。

在此基础之上增加枚举计算过程即可,完整源代码如下所示。

SSSDT 函数起始index是0x1000,但W32pServiceTable是从基址开始记录的,这个误差则需要(index-0x1000)来得到,至于+4则是下一个元素与上一个元素的偏移。

计算公式:

  • W32pServiceTable + 4 * (index-0x1000)
#include <ntifs.h>
#pragma intrinsic(__readmsr)typedef struct _SYSTEM_SERVICE_TABLE
{PVOID          ServiceTableBase;PVOID          ServiceCounterTableBase;ULONGLONG      NumberOfServices;PVOID          ParamTableBase;
} SYSTEM_SERVICE_TABLE, *PSYSTEM_SERVICE_TABLE;PSYSTEM_SERVICE_TABLE KeServiceDescriptorTableShadow = 0;
ULONG64 ul64W32pServiceTable = 0;// 获取 KeServiceDescriptorTableShadow 首地址
ULONGLONG GetKeServiceDescriptorTableShadow()
{// 设置起始位置PUCHAR StartSearchAddress = (PUCHAR)__readmsr(0xC0000082) - 0x1808FE;// 设置结束位置PUCHAR EndSearchAddress = StartSearchAddress + 0x8192;// DbgPrint("扫描起始地址: %p --> 扫描结束地址: %p \n", StartSearchAddress, EndSearchAddress);PUCHAR ByteCode = NULL;UCHAR OpCodeA = 0, OpCodeB = 0, OpCodeC = 0;ULONGLONG addr = 0;ULONG templong = 0;for (ByteCode = StartSearchAddress; ByteCode < EndSearchAddress; ByteCode++){// 使用MmIsAddressValid()函数检查地址是否有页面错误if (MmIsAddressValid(ByteCode) && MmIsAddressValid(ByteCode + 1) && MmIsAddressValid(ByteCode + 2)){OpCodeA = *ByteCode;OpCodeB = *(ByteCode + 1);OpCodeC = *(ByteCode + 2);// 对比特征值 寻找 nt!KeServiceDescriptorTable 函数地址/*lyshark kd> u KiSystemServiceRepeatnt!KiSystemServiceRepeat:fffff802`7c1d2b94 4c8d15e59c3b00  lea     r10,[nt!KeServiceDescriptorTable (fffff802`7c58c880)]fffff802`7c1d2b9b 4c8d1dde1e3a00  lea     r11,[nt!KeServiceDescriptorTableShadow (fffff802`7c574a80)]fffff802`7c1d2ba2 f7437880000000  test    dword ptr [rbx+78h],80hfffff802`7c1d2ba9 7413            je      nt!KiSystemServiceRepeat+0x2a (fffff802`7c1d2bbe)fffff802`7c1d2bab f7437800002000  test    dword ptr [rbx+78h],200000hfffff802`7c1d2bb2 7407            je      nt!KiSystemServiceRepeat+0x27 (fffff802`7c1d2bbb)fffff802`7c1d2bb4 4c8d1d051f3a00  lea     r11,[nt!KeServiceDescriptorTableFilter (fffff802`7c574ac0)]fffff802`7c1d2bbb 4d8bd3          mov     r10,r11*/if (OpCodeA == 0x4c && OpCodeB == 0x8d && OpCodeC == 0x1d){// 获取高位地址fffff802memcpy(&templong, ByteCode + 3, 4);// 与低位64da4880地址相加得到完整地址addr = (ULONGLONG)templong + (ULONGLONG)ByteCode + 7;return addr;}}}return  0;
}// 得到SSSDT个数
ULONGLONG GetSSSDTCount()
{PSYSTEM_SERVICE_TABLE pWin32k;ULONGLONG W32pServiceTable;pWin32k = (PSYSTEM_SERVICE_TABLE)((ULONG64)KeServiceDescriptorTableShadow + sizeof(SYSTEM_SERVICE_TABLE));W32pServiceTable = (ULONGLONG)(pWin32k->ServiceTableBase);// DbgPrint("Count => %d \n", pWin32k->NumberOfServices);return pWin32k->NumberOfServices;
}VOID UnDriver(PDRIVER_OBJECT driver)
{DbgPrint(("驱动程序卸载成功! \n"));
}NTSTATUS DriverEntry(PDRIVER_OBJECT DriverObject, PUNICODE_STRING RegistryPath)
{DbgPrint("hello lyshark \n");KeServiceDescriptorTableShadow = (PSYSTEM_SERVICE_TABLE)GetKeServiceDescriptorTableShadow();DbgPrint("[LyShark] SSSDT基地址 = 0x%p \n", KeServiceDescriptorTableShadow);ULONGLONG count = GetSSSDTCount();DbgPrint("[LyShark] SSSDT个数 = %d \n", count);// 循环枚举SSSDTfor (size_t Index = 0; Index < count; Index++){PSYSTEM_SERVICE_TABLE pWin32k;ULONGLONG W32pServiceTable;pWin32k = (PSYSTEM_SERVICE_TABLE)((ULONG64)KeServiceDescriptorTableShadow + sizeof(SYSTEM_SERVICE_TABLE));W32pServiceTable = (ULONGLONG)(pWin32k->ServiceTableBase);// 获取SSSDT地址//ln win32k!W32pServiceTable+((poi(win32k!W32pServiceTable+4*(1-1000))&0x00000000`ffffffff)>>4)-10000000//u win32k!W32pServiceTable+((poi(win32k!W32pServiceTable+4*(Index-0x1000))&0x00000000`ffffffff)>>4)-0x10000000//u poi(win32k!W32pServiceTable+4*(1-0x1000))//u poi(win32k!W32pServiceTable+4*(1-0x1000))&0x00000000`ffffffff//u (poi(win32k!W32pServiceTable+4*(1-0x1000))&0x00000000`ffffffff)>>4//u win32k!W32pServiceTable+((poi(win32k!W32pServiceTable+4*(1-0x1000))&0x00000000`ffffffff)>>4)-0x10000000ULONGLONG qword_temp = 0;LONG dw = 0;// SSSDT 下标从1000开始,而W32pServiceTable是从0开始// + 4 则是每次向下4字节就是下一个地址qword_temp = W32pServiceTable + 4 * (Index - 0x1000);dw = *(PLONG)qword_temp;// dw = qword_temp & 0x00000000ffffffff;dw = dw >> 4;qword_temp = W32pServiceTable + (LONG64)dw;DbgPrint("[LyShark] ID: %d | SSSDT: 0x%p \n", Index, qword_temp);}DriverObject->DriverUnload = UnDriver;return STATUS_SUCCESS;
}

枚举效果如下图所示所示,注意这一步必须要在GUI线程中执行,否则会异常,建议将枚举过程写成DLL文件,注入到explorer.exe进程内执行;

相关文章:

6.2 Windows驱动开发:内核枚举SSSDT表基址

在Windows内核中&#xff0c;SSSDT&#xff08;System Service Shadow Descriptor Table&#xff09;是SSDT&#xff08;System Service Descriptor Table&#xff09;的一种变种&#xff0c;其主要用途是提供Windows系统对系统服务调用的阴影拷贝。SSSDT表存储了系统调用的函数…...

实时LCM的ImgPilot搭建部署

ImgPilot是具有实时潜在一致性模型&#xff08;LCM&#xff09;功能的图像试点 下载源码 GitHub - leptonai/imgpilot: Image pilot with the power of Real-Time Latent Consistency Modelhttps://github.com/leptonai/imgpilot安装前端web cd imgpilot npm install 安装…...

开源与闭源:大模型未来的发展之争

在当今数字化时代&#xff0c;开源与闭源软件一直是技术界争论的热点话题。随着人工智能技术的快速发展&#xff0c;特别是大模型&#xff08;如GPT-4等&#xff09;的广泛应用&#xff0c;这个辩论在大模型技术的背景下变得更加引人注目。本文将探讨开源与闭源的优劣势比较&am…...

linux系统初始化本地git,创建ssh-key

step1, 在linux系统配置你的git信息 sudo apt install -y git//step1 git config --global user.name your_name // github官网注册的用户名 git config --global user.email your_email //gitub官网注册绑定的邮箱 git config --list //可以查看刚才你的配置内容…...

JDBC 操作 SQL Server 时如何传入列表参数

本文是作为将要对 PostgreSQL 的 in, any() 操作的一个铺垫&#xff0c;也是对先前用 JDBC 操作 SQL Server 的温习。以此记录一下用 JDBC 查询 SQL Server 时如何传递一个列表参数。比如想像一下查询语句 select * from users where id in (?) 我们是否能给这里的问题参数传递…...

[算法总结] - 蓄水池采样算法

问题描述 在长度为N的数组中&#xff0c;随机等概率选取K个元素&#xff0c;如何实现这个随机算法。 思路很简单&#xff0c;生成一个[0, N]的随机数index&#xff0c;然后返回index上的数值即可。 但是&#xff0c;如果输入是一个长度未知的数组比如stream&#xff0c;先遍历…...

【Dockerfile】将自己的项目构建成镜像部署运行

目录 1.Dockerfile 2.镜像结构 3.Dockerfile语法 4.构建Java项目 5.基于Java8构建项目 1.Dockerfile 常见的镜像在DockerHub就能找到&#xff0c;但是我们自己写的项目就必须自己构建镜像了。 而要自定义镜像&#xff0c;就必须先了解镜像的结构才行。 2.镜像结构 镜…...

flink和机器学习模型的常用组合方式

背景 flink是一个低延迟高吞吐的系统&#xff0c;每秒处理的数据量高达数百万&#xff0c;而机器模型一般比较笨重&#xff0c;虽然功能强大&#xff0c;但是qps一般都比较低&#xff0c;日常工作中&#xff0c;我们一般是如何把flink和机器学习模型组合起来一起使用呢? fli…...

自动驾驶学习笔记(十二)——定位技术

#Apollo开发者# 学习课程的传送门如下&#xff0c;当您也准备学习自动驾驶时&#xff0c;可以和我一同前往&#xff1a; 《自动驾驶新人之旅》免费课程—> 传送门 《Apollo Beta宣讲和线下沙龙》免费报名—>传送门 文章目录 前言 卫星定位 RTK定位 IMU定位 GNSS定…...

【MySQL系列】PolarDB入门使用

&#x1f49d;&#x1f49d;&#x1f49d;欢迎来到我的博客&#xff0c;很高兴能够在这里和您见面&#xff01;希望您在这里可以感受到一份轻松愉快的氛围&#xff0c;不仅可以获得有趣的内容和知识&#xff0c;也可以畅所欲言、分享您的想法和见解。 推荐:kwan 的首页,持续学…...

第二节HarmonyOS DevEco Studio创建项目以及界面认识

一、创建项目 如果你是首次打开DevEco Studio&#xff0c;那么首先会进入欢迎页。 在欢迎页中单击Create Project&#xff0c;进入项目创建页面。 选择‘Application’&#xff0c;然后选择‘Empty Ability’&#xff0c;单击‘Next’进入工程配置页。 配置页中&#xff0c;详…...

网页设计--第5次课后作业

1、快速学习JavaScript的基本知识第11-14章 JavaScript入门 - 绿叶学习网 2、使用所学的知识完成以下练习。 1&#xff09;点击 “点亮”按钮 点亮灯泡&#xff0c;点击“熄灭”按钮 熄灭灯泡 2&#xff09;输入框鼠标聚焦后&#xff0c;展示小写&#xff1b;鼠标离焦后…...

Spring Cache框架,实现了基于注解的缓存功能。

个人简介&#xff1a;Java领域新星创作者&#xff1b;阿里云技术博主、星级博主、专家博主&#xff1b;正在Java学习的路上摸爬滚打&#xff0c;记录学习的过程~ 个人主页&#xff1a;.29.的博客 学习社区&#xff1a;进去逛一逛~ Spring Cache框架 简介Spring Cache 环境准备S…...

CSS-鼠标属性篇

属性名&#xff1a;cursor 功能&#xff1a;设置鼠标光标的样式 属性值&#xff1a; pointer&#xff1a;小手move&#xff1a;移动图标text&#xff1a;文字选择器crosshair&#xff1a;十字架wait&#xff1a;等待help&#xff1a;帮助 eg.html{ cursor: wait;}(此处使用css改…...

Fiddler弱网测试究竟该怎么做?

前言 使用Fiddler对手机App应用进行抓包&#xff0c;可以对App接口进行测试&#xff0c;也可以了解App传输中流量使用及请求响应情况&#xff0c;从而测试数据传输过程中流量使用的是否合理。 抓包过程&#xff1a; 1、Fiddler设置 1&#xff09;启动Fiddler->Tools->…...

蓝桥杯-平方和(599)

【题目】平方和 【通过测试】代码 import java.util.Scanner; import java.util.ArrayList; import java.util.List; // 1:无需package // 2: 类名必须Main, 不可修改public class Main {public static void main(String[] args) {Scanner scan new Scanner(System.in);//在此…...

从零构建属于自己的GPT系列1:预处理模块(逐行代码解读)、文本tokenizer化

1 训练数据 在本任务的训练数据中&#xff0c;我选择了金庸的15本小说&#xff0c;全部都是txt文件 数据打开后的样子 数据预处理需要做的事情就是使用huggingface的transformers包的tokenizer模块&#xff0c;将文本转化为token 最后生成的文件就是train_novel.pkl文件&a…...

STM32内存介绍

ROM是一种只读存储器&#xff0c;经历了从NOR Flash到NAND Flash再到现在的eMMC的发展。为了便于使用和大批量生产&#xff0c;ROM进一步分为了4种类型&#xff1a;PROM、EPROM、EEPROM和Flash。PROM只能被编程一次&#xff0c;EPROM可擦写可编程且可达1000次&#xff0c;EEPRO…...

Qt::Window 、Qt::Tool是 Qt 框架中的一个窗口标志(Window Flag),用于指定窗口的类型和行为

Qt::Window Qt::Window 是 Qt 框架中的一个窗口标志&#xff08;Window Flag&#xff09;&#xff0c;用于指定窗口的类型和行为。 在 Qt 中&#xff0c;窗口标志用于控制窗口的外观、行为和交互方式。通过使用不同的窗口标志组合&#xff0c;可以定制窗口的特性&#xff0c;…...

东胜物流软件 SQL注入漏洞复现

0x01 产品简介 东胜物流软件是一款致力于为客户提供IT支撑的 SOP&#xff0c; 帮助客户大幅提高工作效率&#xff0c;降低各个环节潜在风险的物流软件。 0x02 漏洞概述 东胜物流软件 TCodeVoynoAdapter.aspx、/TruckMng/MsWlDriver/GetDataList、/MvcShipping/MsBaseInfo/Sav…...

Linux链表操作全解析

Linux C语言链表深度解析与实战技巧 一、链表基础概念与内核链表优势1.1 为什么使用链表&#xff1f;1.2 Linux 内核链表与用户态链表的区别 二、内核链表结构与宏解析常用宏/函数 三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势5.1 插入效率5.2 安全…...

Appium+python自动化(十六)- ADB命令

简介 Android 调试桥(adb)是多种用途的工具&#xff0c;该工具可以帮助你你管理设备或模拟器 的状态。 adb ( Android Debug Bridge)是一个通用命令行工具&#xff0c;其允许您与模拟器实例或连接的 Android 设备进行通信。它可为各种设备操作提供便利&#xff0c;如安装和调试…...

React第五十七节 Router中RouterProvider使用详解及注意事项

前言 在 React Router v6.4 中&#xff0c;RouterProvider 是一个核心组件&#xff0c;用于提供基于数据路由&#xff08;data routers&#xff09;的新型路由方案。 它替代了传统的 <BrowserRouter>&#xff0c;支持更强大的数据加载和操作功能&#xff08;如 loader 和…...

自然语言处理——循环神经网络

自然语言处理——循环神经网络 循环神经网络应用到基于机器学习的自然语言处理任务序列到类别同步的序列到序列模式异步的序列到序列模式 参数学习和长程依赖问题基于门控的循环神经网络门控循环单元&#xff08;GRU&#xff09;长短期记忆神经网络&#xff08;LSTM&#xff09…...

使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台

🎯 使用 Streamlit 构建支持主流大模型与 Ollama 的轻量级统一平台 📌 项目背景 随着大语言模型(LLM)的广泛应用,开发者常面临多个挑战: 各大模型(OpenAI、Claude、Gemini、Ollama)接口风格不统一;缺乏一个统一平台进行模型调用与测试;本地模型 Ollama 的集成与前…...

Hive 存储格式深度解析:从 TextFile 到 ORC,如何选对数据存储方案?

在大数据处理领域&#xff0c;Hive 作为 Hadoop 生态中重要的数据仓库工具&#xff0c;其存储格式的选择直接影响数据存储成本、查询效率和计算资源消耗。面对 TextFile、SequenceFile、Parquet、RCFile、ORC 等多种存储格式&#xff0c;很多开发者常常陷入选择困境。本文将从底…...

安宝特方案丨船舶智造的“AR+AI+作业标准化管理解决方案”(装配)

船舶制造装配管理现状&#xff1a;装配工作依赖人工经验&#xff0c;装配工人凭借长期实践积累的操作技巧完成零部件组装。企业通常制定了装配作业指导书&#xff0c;但在实际执行中&#xff0c;工人对指导书的理解和遵循程度参差不齐。 船舶装配过程中的挑战与需求 挑战 (1…...

AGain DB和倍数增益的关系

我在设置一款索尼CMOS芯片时&#xff0c;Again增益0db变化为6DB&#xff0c;画面的变化只有2倍DN的增益&#xff0c;比如10变为20。 这与dB和线性增益的关系以及传感器处理流程有关。以下是具体原因分析&#xff1a; 1. dB与线性增益的换算关系 6dB对应的理论线性增益应为&…...

基于Java+MySQL实现(GUI)客户管理系统

客户资料管理系统的设计与实现 第一章 需求分析 1.1 需求总体介绍 本项目为了方便维护客户信息为了方便维护客户信息&#xff0c;对客户进行统一管理&#xff0c;可以把所有客户信息录入系统&#xff0c;进行维护和统计功能。可通过文件的方式保存相关录入数据&#xff0c;对…...

Vue 模板语句的数据来源

&#x1f9e9; Vue 模板语句的数据来源&#xff1a;全方位解析 Vue 模板&#xff08;<template> 部分&#xff09;中的表达式、指令绑定&#xff08;如 v-bind, v-on&#xff09;和插值&#xff08;{{ }}&#xff09;都在一个特定的作用域内求值。这个作用域由当前 组件…...