机器学习——多元线性回归升维
机器学习升维
- 升维
- 使用sklearn库实现特征升维
- 实现天猫年度销量预测
- 实现中国人寿保险预测
升维
定义:将原始的数据表示从低维空间映射到高维空间。在线性回归中,升维通常是通过引入额外的特征来实现的,目的是为了更好地捕捉数据的复杂性,特别是当数据之间的关系是非线性的时候。
目的:解决欠拟合问题,提高模型的准确率。为解决因对预测结果考虑因素比较少,而无法准确计算出模型参数问题。
常用方法:将已知维度进行自乘(或相乘)来构建新的维度。
本文主要记录的是线性回归中遇到数据呈现非线性特征时,该如何处理!
切记:对训练集特征升维后也要对测试集、验证集特征数据进行升维操作
数据准备如下:

如果对其直接进行线性回归,则拟合后的模型如下:

从上述两图可知,对于具有非线性特征的图像,不对其使用特使的处理,则无法对其产生比较好的模型拟合。
上述图像生成代码:
# 导包
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
# 创建数据
X = np.linspace(-1,11,100)
y = (X - 5)**2 + 3*X + 12 + np.random.randn(100)
X = X.reshape(-1,1)
# display(X.shape,y.shape)
plt.scatter(X,y)# 不升维直接用线性回归解决
model = LinearRegression()
model.fit(X,y)
X_test = np.linspace(-2,12,300).reshape(-1,1)
y_test = model.predict(X_test)
plt.scatter(X,y)
plt.plot(X_test,y_test,color = 'red')
为了使得可以对具有非线性特征的数据进行处理,生成一个较好的模型,可是实现预测的任务,于是便有了升维操作,下举例升维和不升维的区别:
不升维:二维数据x1, x2若不对其进行升维操作,则其拟合的多元线性回归公式为:
y = w 1 ∗ x 1 + w 2 ∗ x 2 + w 0 y = w_1*x_1 + w_2*x_2 + w_0 y=w1∗x1+w2∗x2+w0
升维:若对二维数据x1,x2进行升维操作,则其可有5个维度(以自乘为例):x1、x2、x12,x22、x1*x2,在加上一个偏置项w0,一共有六个参数,则其拟合后的多元线性回归公式为:
y = w 0 + w 1 ∗ x 1 + w 2 ∗ x 2 + w 3 ∗ x 1 2 + w 4 ∗ x 2 2 + w 5 ∗ x 1 ∗ x 2 y= w_0+w_1*x_1+w_2*x_2+w_3*x_1^2+w_4*x_2^2+w_5*x_1*x_2 y=w0+w1∗x1+w2∗x2+w3∗x12+w4∗x22+w5∗x1∗x2
若这样,则由原本的一维线性方程转换成了二维函数(最直观的表现),则原本的数据集则可以拟合成下图所示的模型:

上图生成代码如下:
# 导包
import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
X = np.linspace(-1,11,100)
y = (X - 5)**2 + 3*X + 12 + np.random.randn(100)
X = X.reshape(-1,1)# 升维,可以解决多项式的问题,直观表现为可以让直线进行拐弯
np.set_printoptions(suppress=True)
X2 = np.concatenate([X,X**2], axis= 1)
# 注:只需要对特征进行升维,不需要对目标值进行升维# 生成测试数据
X_test = np.linspace(-2,12,300).reshape(-1,1)
model2 = LinearRegression()
model2.fit(X2,y)
X_test2 = np.concatenate([X_test,X_test**2],axis=1)
y_test2 = model2.predict(X_test2)
print('所求的w是\n',model2.coef_)
print('所求的截距b是\n',model2.intercept_)# 绘制图像的时候要用没升维的数据进行绘制
plt.scatter(X,y,color='green')
plt.plot(X_test,y_test2,color = 'red')
使用sklearn库实现特征升维
在sklearn中具有很多封装好的工具,可以直接调用。
from sklearn.preprocessing import PolynomialFeatures # (多项式)升维的python库
使用方法:
# 特征和特征之间相乘
poly = PolynomialFeatures(interaction_only=True)
A = [[3,2]]
poly.fit_transform(A)
# 生成结果:array([[1., 3., 2., 6.]])#特征之间乘法,自己和自己自乘(在上述情况下加上自己的乘法)
poly = PolynomialFeatures(interaction_only=False)
A = [[3,2,5]]
poly.fit_transform(A)
# 生成结果:array([[ 1., 3., 2., 5., 9., 6., 15., 4., 10., 25.]])# 可以通过degree来提高升维的大小
poly = PolynomialFeatures(degree=4,interaction_only=False)# 特征和特征之间相乘
A = [[3,2,5]]
poly.fit_transform(A)
# 生成结果:
# array([[ 1., 3., 2., 5., 9., 6., 15., 4., 10., 25., 27.,
# 18., 45., 12., 30., 75., 8., 20., 50., 125., 81., 54.,
# 135., 36., 90., 225., 24., 60., 150., 375., 16., 40., 100.,
# 250., 625.]])
实现天猫年度销量预测
实现代码:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.preprocessing import PolynomialFeatures,StandardScaler
from sklearn.linear_model import LinearRegression,SGDRegressor# 创建数据
X = np.arange(2009,2020).reshape(-1,1) - 2008
y = np.array([0.5,9.36,52,191,350,571,912,1207,1682,2135,2684])
plt.scatter(X,y)
# 创建测试数据
X_test = np.linspace(2009,2020,100).reshape(-1,1) - 2008# 数据升维
ploy = PolynomialFeatures(degree=2, interaction_only=False)
X2 = ploy.fit_transform(X)
X_test2 = ploy.fit_transform(X_test)# 模型创建LinearRegression
model = LinearRegression(fit_intercept=False)
model.fit(X2,y)
y_pred = model.predict(X_test2)
print('参数w为:',model.coef_)
print('参数b为:',model.intercept_)plt.scatter(X,y,color='green')
plt.plot(X_test,y_pred,color='red')
# 使用SGD进行梯度下降,必须要归一化,否则效果会非常不好
# 创建测试数据
X_test = np.linspace(2009,2019,100).reshape(-1,1) - 2008# 数据升维
ploy = PolynomialFeatures(degree=2, interaction_only=False)
X2 = ploy.fit_transform(X)
X_test2 = ploy.fit_transform(X_test)#对数据进行归一化操作
standard = StandardScaler()
X2_norm = standard.fit_transform(X2)
X_test2_norm = standard.fit_transform(X_test2)# 模型创建SGDRegression
model = SGDRegressor(eta0=0.3, max_iter=5000)
model.fit(X2_norm,y)
y_pred = model.predict(X_test2_norm)
print('参数w为:',model.coef_)
print('参数b为:',model.intercept_)plt.scatter(X,y,color='green')
plt.plot(X_test,y_pred,color='red')
这里需要说明一下情况,如果第二段代码不进行归一化,则呈现的是下图:

如果进行了归一化,则产生的和法一LinearRegession是一样的图形(基本相同):

这是什么原因?
- 线性回归(Linear Regression)和随机梯度下降(SGD)在处理特征尺度不同的问题上有一些不同之处,导致线性回归相对于特征尺度的敏感性较低。
- SGD的更新规则涉及学习率(η)和梯度。如果不同特征的尺度相差很大,梯度的大小也会受到这种尺度差异的影响。因此在引入高次项或其他非线性特征,需要注意特征的尺度,避免数值上的不稳定性。
- SGD中的正则化项通常依赖于权重的大小。通过归一化,可以使得正则化项对所有特征的影响更加平衡。
实现中国人寿保险预测
import pandas as pd
import seaborn as sns
import numpy as np
from sklearn.linear_model import LinearRegression,ElasticNet
from sklearn.metrics import mean_squared_error,mean_squared_log_error
from sklearn.model_selection import train_test_split
from sklearn.preprocessing import PolynomialFeatures# 读取数据
data_renshou = pd.read_excel('your_path/中国人寿.xlsx')
# 可以通过下式生成图像,查看那些数据是好数据那些是不好的数据——好特征:差别大,容易区分
#sns.kdeplot(data=data_renshou, x="charges",hue="sex",shade=True)
#sns.kdeplot(data=data_renshou, x="charges",hue="smoker",shade=True)
#sns.kdeplot(data=data_renshou, x="charges",hue="region",shade=True)
#sns.kdeplot(data=data_renshou, x="charges",hue="children",shade=True)# 特征工程,对数据进行处理
data_renshou = data_renshou.drop(['region','sex'],axis = 1) # 删除不好的特征# 体重指数,离散化转换,体重两种情况:标准,fat
def conver(df,bmi):df['bmi'] = 'fat' if df['bmi'] >= bmi else 'standard'return df
data_renshou = data_renshou.apply(conver, axis=1,args=(30,))# 特征提取,离散转数值型数据
data_renshou = pd.get_dummies(data_renshou)
data_renshou.head()#特征和目标值提取
# 训练数据
x = data_renshou.drop('charges', axis=1)
# 目标值
y = data_renshou['charges']# 划分数据
X_train,X_test,y_train,y_test = train_test_split(x,y,test_size=0.2)# 特征升维(导致了他下面的参数biandu)
poly = PolynomialFeatures(degree=2, include_bias=False)
X_train_poly = poly.fit_transform(X_train)
X_test_poly = poly.fit_transform(X_test)
# 模型训练与评估
np.set_printoptions(suppress=True)
model = LinearRegression()
model.fit(X_train_poly,y_train)
print('测试数据得分:',model.score(X_train_poly,y_train))
print('预测数据得分:',model.score(X_test_poly,y_test))
print('测试数据均方误差:',np.sqrt(mean_squared_error(y_test,model.predict(X_test_poly))))
print('训练数据均方误差:',np.sqrt(mean_squared_error(y_train,model.predict(X_train_poly))))
print('测试数据对数误差:',np.sqrt(mean_squared_log_error(y_test,model.predict(X_test_poly))))
print('训练数据对数误差:',np.sqrt(mean_squared_log_error(y_train,model.predict(X_train_poly))))
print('获得的参数为:',model.coef_.round(2),model.intercept_.round(2))
相关文章:
机器学习——多元线性回归升维
机器学习升维 升维使用sklearn库实现特征升维实现天猫年度销量预测实现中国人寿保险预测 升维 定义:将原始的数据表示从低维空间映射到高维空间。在线性回归中,升维通常是通过引入额外的特征来实现的,目的是为了更好地捕捉数据的复杂性&#…...
[C/C++]用堆实现TopK算法
一:引入 思考一个问题: 怎么在100个数中找到前10个最大的数? way1: 相信大多数人想到的方法是先把100个数放到数组中从大到小排序,再打印前10个数 way2: 前一文中我们讲了堆结构,那么就可以把这100个数建为大堆,再依次pop10次 这种方法虽然再这个问题下可行,但是如果是再1亿…...
3D点云目标检测:VoxelNex解读(带源码/未完)
VoxelNext 通用vsVoxelNext一、3D稀疏卷积模块1.1、额外的两次下采样1.2、稀疏体素删减 二、高度压缩三、稀疏池化四、head五、waymo数据集训练六、训练自己的数据集bug修改 通用vsVoxelNext 一、3D稀疏卷积模块 1.1、额外的两次下采样 使用通用的3D sparse conv,…...
【Docker】从零开始:11.Harbor搭建企业镜像仓库
【Docker】从零开始:11.Harbor搭建企业镜像仓库 1. Harbor介绍2. 软硬件要求(1). 硬件要求(2). 软件要求 3.Harbor优势4.Harbor的误区5.Harbor的几种安装方式6.在线安装(1).安装composer(2).配置内核参数,开启路由转发(3).下载安装包并解压(4).创建并修改配置文件(5…...
使用conan包 - 工作流程
使用conan包 - 工作流程 主目录 conan Using packages1 Single configuration2 Multi configuration 本文是基于对conan官方文档Workflows的翻译而来, 更详细的信息可以去查阅conan官方文档。 This section shows how to setup your project and manage dependenci…...
【LeeCode】59.螺旋矩阵II
给定一个正整数 n,生成一个包含 1 到 n^2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。 示例: 输入: 3 输出: [ [ 1, 2, 3 ], [ 8, 9, 4 ], [ 7, 6, 5 ] ] 解: class Solution {public int[][] generateMatrix(int n) {int[][] ar…...
rsyslog学习
rsyslog是什么 RSYSLOG(Remote System Logging)是一个开源的日志处理工具,用于在 Linux 和 Unix 系统上收集、处理和转发日志。它是一个健壮且高性能的日志处理程序,可以替换 Syslogd 作为标准的系统日志程序。RSYSLOG 提供了许多…...
Navicat 技术指引 | GaussDB服务器对象的创建/设计(编辑)
Navicat Premium(16.2.8 Windows版或以上) 已支持对GaussDB 主备版的管理和开发功能。它不仅具备轻松、便捷的可视化数据查看和编辑功能,还提供强大的高阶功能(如模型、结构同步、协同合作、数据迁移等),这…...
有哪些可信的SSL证书颁发机构?
目前市面上所显示的SSL证书颁发机构可所谓不计其数,类型也是多样,就好比我们同样是买一件T恤,却有百家不同类型的店铺一个道理。根据CA里面看似很多,但能拿到99%浏览器及设备信任度的寥寥无几,下面小编整理出几家靠谱可…...
MidJourney笔记(4)-settings
前面已经大概介绍了MidJourney的基础知识,后面我主要是基于实操来分享自己的笔记。可能内容顺序会有点乱,请大家理解。 这次主要是想讲讲settings这个命令。我们只需在控制台输入/settings,然后回车,就可以执行这个命令。 (2023年11月26日版本界面) 可能有些朋友出来的界…...
前端开发学习 (三) 列表功能
一、列表功能 1、列表功能 <!DOCTYPE html> <html lang"en"><head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><meta http-equiv"X-UA-Compa…...
win11渗透武器库,囊括所有渗透工具
开箱即用,最全的武器库,且都是2023年11月最新版,后续自己还可以再添加,下载地址:https://download.csdn.net/download/weixin_59679023/88565739 服务连接 信息收集工具 端口扫描 代理抓包 漏洞扫描 指纹识别 webshel…...
13-21-普通数组、矩阵
LeetCode 热题 100 文章目录 LeetCode 热题 100普通数组13. 中等-最大子数组和14. 中等-合并区间15. 中等-轮转数组16. 中等-除自身以外数组的乘积17. 困难-缺失的第一个正数 矩阵18. 中等-矩阵置零19. 中等-螺旋矩阵20. 中等-旋转图像21. 中等-搜索二维矩阵II 本文存储我刷题的…...
代码随想录算法训练营第四十六天【动态规划part08】 | 139.单词拆分、背包总结
139.单词拆分 题目链接: 力扣(LeetCode)官网 - 全球极客挚爱的技术成长平台 求解思路: 单词是物品,字符串s是背包,单词能否组成字符串s,就是问物品能不能把背包装满。 动规五部曲 确定dp数…...
go语言基础 break和contine区别
背景 break和continue是编程语言的标准语法,几乎在所有的语言都有类似的用法。 go语言及所有其他编程语言for循环或者其他循环 区别 for i : 0; i < 10; i {if i 5 {continue}fmt.Println(i)for j : 0; j < 3; j {fmt.Println(strconv.Itoa(j) "a&q…...
vue3父子组件通过$parent与ref通信
父组件 <template><div><h1>ref与$parents父子组件通信 {{ parentMoney }}</h1><button click"handler">点击我子组件的值会减20</button><hr><child ref"children"></child></div> </te…...
PHP中的常见的超全局变量
PHP是一种广泛使用的服务器端脚本语言,它被用于开发各种Web应用程序。在PHP中,有一些特殊的全局变量,被称为超全局变量。超全局变量在整个脚本中都是可用的,无需使用global关键字来访问它们。在本文中,我们将深入了解P…...
leetcode9.回文数
回文数 0.题目1.WJQ的思路2.实现过程2.0 原始值怎么一个个取出来?2.1 取出来的数如何存到新的数字后面?2.2完整的反转得到新数的过程 3.完整的代码4.可运行的代码5.算法还可以优化的部分 0.题目 给你一个整数 x ,如果 x 是一个回文整数&…...
springboot(ssm大学生二手电子产品交易平台 跳蚤市场系统Java(codeLW)
springboot(ssm大学生二手电子产品交易平台 跳蚤市场系统Java(code&LW) 开发语言:Java 框架:ssm/springboot vue JDK版本:JDK1.8(或11) 服务器:tomcat 数据库:mysql 5.7(或…...
关于微信小程序中如何实现数据可视化-echarts动态渲染
移动端设备中,难免会涉及到数据的可视化展示、数据统计等等,本篇主要讲解原生微信小程序中嵌入echarts并进行动态渲染,实现数据可视化功能。 基础使用 首先在GitHub上下载echarts包 地址:https://github.com/ecomfe/echarts-for…...
Qt Widget类解析与代码注释
#include "widget.h" #include "ui_widget.h"Widget::Widget(QWidget *parent): QWidget(parent), ui(new Ui::Widget) {ui->setupUi(this); }Widget::~Widget() {delete ui; }//解释这串代码,写上注释 当然可以!这段代码是 Qt …...
连锁超市冷库节能解决方案:如何实现超市降本增效
在连锁超市冷库运营中,高能耗、设备损耗快、人工管理低效等问题长期困扰企业。御控冷库节能解决方案通过智能控制化霜、按需化霜、实时监控、故障诊断、自动预警、远程控制开关六大核心技术,实现年省电费15%-60%,且不改动原有装备、安装快捷、…...
土地利用/土地覆盖遥感解译与基于CLUE模型未来变化情景预测;从基础到高级,涵盖ArcGIS数据处理、ENVI遥感解译与CLUE模型情景模拟等
🔍 土地利用/土地覆盖数据是生态、环境和气象等诸多领域模型的关键输入参数。通过遥感影像解译技术,可以精准获取历史或当前任何一个区域的土地利用/土地覆盖情况。这些数据不仅能够用于评估区域生态环境的变化趋势,还能有效评价重大生态工程…...
让AI看见世界:MCP协议与服务器的工作原理
让AI看见世界:MCP协议与服务器的工作原理 MCP(Model Context Protocol)是一种创新的通信协议,旨在让大型语言模型能够安全、高效地与外部资源进行交互。在AI技术快速发展的今天,MCP正成为连接AI与现实世界的重要桥梁。…...
Linux离线(zip方式)安装docker
目录 基础信息操作系统信息docker信息 安装实例安装步骤示例 遇到的问题问题1:修改默认工作路径启动失败问题2 找不到对应组 基础信息 操作系统信息 OS版本:CentOS 7 64位 内核版本:3.10.0 相关命令: uname -rcat /etc/os-rele…...
如何更改默认 Crontab 编辑器 ?
在 Linux 领域中,crontab 是您可能经常遇到的一个术语。这个实用程序在类 unix 操作系统上可用,用于调度在预定义时间和间隔自动执行的任务。这对管理员和高级用户非常有益,允许他们自动执行各种系统任务。 编辑 Crontab 文件通常使用文本编…...
【Android】Android 开发 ADB 常用指令
查看当前连接的设备 adb devices 连接设备 adb connect 设备IP 断开已连接的设备 adb disconnect 设备IP 安装应用 adb install 安装包的路径 卸载应用 adb uninstall 应用包名 查看已安装的应用包名 adb shell pm list packages 查看已安装的第三方应用包名 adb shell pm list…...
从 GreenPlum 到镜舟数据库:杭银消费金融湖仓一体转型实践
作者:吴岐诗,杭银消费金融大数据应用开发工程师 本文整理自杭银消费金融大数据应用开发工程师在StarRocks Summit Asia 2024的分享 引言:融合数据湖与数仓的创新之路 在数字金融时代,数据已成为金融机构的核心竞争力。杭银消费金…...
PostgreSQL——环境搭建
一、Linux # 安装 PostgreSQL 15 仓库 sudo dnf install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-$(rpm -E %{rhel})-x86_64/pgdg-redhat-repo-latest.noarch.rpm# 安装之前先确认是否已经存在PostgreSQL rpm -qa | grep postgres# 如果存在࿰…...
深度剖析 DeepSeek 开源模型部署与应用:策略、权衡与未来走向
在人工智能技术呈指数级发展的当下,大模型已然成为推动各行业变革的核心驱动力。DeepSeek 开源模型以其卓越的性能和灵活的开源特性,吸引了众多企业与开发者的目光。如何高效且合理地部署与运用 DeepSeek 模型,成为释放其巨大潜力的关键所在&…...
