yolov8-pose 推理流程
目录
一、关键点预测
二、图像预处理
二、推理
三、后处理与可视化
3.1、后处理
3.2、特征点可视化
四、完整pytorch代码
yolov8-pose tensorrt
一、关键点预测
注:本篇只是阐述推理流程,tensorrt实现后续跟进。
yolov8-pose的tensorrt部署代码稍后更新,还是在仓库:GitHub - FeiYull/TensorRT-Alpha: 🔥🔥🔥TensorRT-Alpha supports YOLOv8、YOLOv7、YOLOv6、YOLOv5、YOLOv4、v3、YOLOX、YOLOR...🚀🚀🚀CUDA IS ALL YOU NEED.🍎🍎🍎It also supports end2end CUDA C acceleration and multi-batch inference.
也可以关注:TensorRT系列教程-CSDN博客
以下是官方预测代码:
from ultralytics import YOLO
model = YOLO(model='yolov8n-pose.pt')
model.predict(source="d:/Data/1.jpg", save=True)
推理过程无非是:图像预处理 -> 推理 -> 后处理 + 可视化,这三个关键步骤在文件大概247行:D:\CodePython\ultralytics\ultralytics\engine\predictor.py,代码如下:
# Preprocess
with profilers[0]:im = self.preprocess(im0s) # 图像预处理# Inference
with profilers[1]:preds = self.inference(im, *args, **kwargs) # 推理# Postprocess
with profilers[2]:self.results = self.postprocess(preds, im, im0s) # 后处理
二、图像预处理
通过debug,进入上述self.preprocess函数,看到代码实现如下。处理流程大概是:padding(满足矩形推理),图像通道转换,即:BGR装RGB,检查图像数据是否连续,存储顺序有HWC转为CHW,然后归一化。需要注意,原始pytorch框架图像预处理的时候,会将图像缩放+padding为HxW的图像,其中H、W为32倍数,而导出tensorrt的时候,为了高效推理,H、W 固定为640x640。
def preprocess(self, im):"""Prepares input image before inference.Args:im (torch.Tensor | List(np.ndarray)): BCHW for tensor, [(HWC) x B] for list."""not_tensor = not isinstance(im, torch.Tensor)if not_tensor:im = np.stack(self.pre_transform(im))im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w)im = np.ascontiguousarray(im) # contiguousim = torch.from_numpy(im)img = im.to(self.device)img = img.half() if self.model.fp16 else img.float() # uint8 to fp16/32if not_tensor:img /= 255 # 0 - 255 to 0.0 - 1.0return img
二、推理
图像预处理之后,直接推理就行了,这里是基于pytorch推理。
def inference(self, im, *args, **kwargs):visualize = increment_path(self.save_dir / Path(self.batch[0][0]).stem,mkdir=True) if self.args.visualize and (not self.source_type.tensor) else Falsereturn self.model(im, augment=self.args.augment, visualize=visualize)
三、后处理与可视化
3.1、后处理
网络推理输出特征图维度为:56x8400,其中:
- 8400表示候选目标数量,
- 56 = xywhc + points * 17,points的长度为3,分别为:xyc,即:特征点的坐标和置信度
尽管推理输出特征图中,每一行既有bbox,还有keypoints,但是NMS的时候,依然只作用于bbox,下面代码作了NMS之后,将筛选之后的目标中bbox、keypoints进行坐标值缩放(缩放到原图尺寸坐标系)。
def postprocess(self, preds, img, orig_imgs):"""Return detection results for a given input image or list of images."""preds = ops.non_max_suppression(preds,self.args.conf,self.args.iou,agnostic=self.args.agnostic_nms,max_det=self.args.max_det,classes=self.args.classes,nc=len(self.model.names))results = []for i, pred in enumerate(preds):orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgsshape = orig_img.shapepred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()pred_kpts = pred[:, 6:].view(len(pred), *self.model.kpt_shape) if len(pred) else pred[:, 6:]pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, shape)path = self.batch[0]img_path = path[i] if isinstance(path, list) else pathresults.append(Results(orig_img=orig_img,path=img_path,names=self.model.names,boxes=pred[:, :6],keypoints=pred_kpts))return results
3.2、特征点可视化
bbox可视化没什么好说的,说下17个特征点的可视化,在文件:D:\CodePython\ultralytics_fire_smoke\ultralytics\utils\plotting.py171行,绘制特征点需要注意,需要按照预定义的顺序绘制,其中特征点置信度需要足够大。
def kpts(self, kpts, shape=(640, 640), radius=5, kpt_line=True):"""Plot keypoints on the image.Args:kpts (tensor): Predicted keypoints with shape [17, 3]. Each keypoint has (x, y, confidence).shape (tuple): Image shape as a tuple (h, w), where h is the height and w is the width.radius (int, optional): Radius of the drawn keypoints. Default is 5.kpt_line (bool, optional): If True, the function will draw lines connecting keypointsfor human pose. Default is True.Note: `kpt_line=True` currently only supports human pose plotting."""if self.pil:# Convert to numpy firstself.im = np.asarray(self.im).copy()nkpt, ndim = kpts.shapeis_pose = nkpt == 17 and ndim == 3kpt_line &= is_pose # `kpt_line=True` for now only supports human pose plotting# 绘制特征点for i, k in enumerate(kpts):color_k = [int(x) for x in self.kpt_color[i]] if is_pose else colors(i)x_coord, y_coord = k[0], k[1]if x_coord % shape[1] != 0 and y_coord % shape[0] != 0:if len(k) == 3:conf = k[2]if conf < 0.5:continuecv2.circle(self.im, (int(x_coord), int(y_coord)), radius, color_k, -1, lineType=cv2.LINE_AA)# 绘制线段if kpt_line:ndim = kpts.shape[-1]for i, sk in enumerate(self.skeleton):pos1 = (int(kpts[(sk[0] - 1), 0]), int(kpts[(sk[0] - 1), 1]))pos2 = (int(kpts[(sk[1] - 1), 0]), int(kpts[(sk[1] - 1), 1]))if ndim == 3:conf1 = kpts[(sk[0] - 1), 2]conf2 = kpts[(sk[1] - 1), 2]if conf1 < 0.5 or conf2 < 0.5:continueif pos1[0] % shape[1] == 0 or pos1[1] % shape[0] == 0 or pos1[0] < 0 or pos1[1] < 0:continueif pos2[0] % shape[1] == 0 or pos2[1] % shape[0] == 0 or pos2[0] < 0 or pos2[1] < 0:continuecv2.line(self.im, pos1, pos2, [int(x) for x in self.limb_color[i]], thickness=2, lineType=cv2.LINE_AA)if self.pil:# Convert im back to PIL and update drawself.fromarray(self.im)
这里给一张特征点顺序图:

四、完整pytorch代码
将以上流程合并起来,并加以修改,完整代码如下:
import torch
import cv2 as cv
import numpy as np
from ultralytics.data.augment import LetterBox
from ultralytics.utils import ops
from ultralytics.engine.results import Results
import copy# path = 'd:/Data/1.jpg'
path = 'd:/Data/6406402.jpg'
device = 'cuda:0'
conf = 0.25
iou = 0.7# preprocess
im = cv.imread(path)
# letterbox
im = [im]
orig_imgs = copy.deepcopy(im)
im = [LetterBox([640, 640], auto=True, stride=32)(image=x) for x in im]
im = im[0][None] # im = np.stack(im)
im = im[..., ::-1].transpose((0, 3, 1, 2)) # BGR to RGB, BHWC to BCHW, (n, 3, h, w)
im = np.ascontiguousarray(im) # contiguous
im = torch.from_numpy(im)
img = im.to(device)
img = img.float()
img /= 255
# load model pt
ckpt = torch.load('yolov8n-pose.pt', map_location='cpu')
model = ckpt['model'].to(device).float() # FP32 model
model.eval()# inference
preds = model(img)
prediction = ops.non_max_suppression(preds, conf, iou, agnostic=False, max_det=300, classes=None, nc=len(model.names))results = []
for i, pred in enumerate(prediction):orig_img = orig_imgs[i] if isinstance(orig_imgs, list) else orig_imgsshape = orig_img.shapepred[:, :4] = ops.scale_boxes(img.shape[2:], pred[:, :4], shape).round()pred_kpts = pred[:, 6:].view(len(pred), *model.kpt_shape) if len(pred) else pred[:, 6:]pred_kpts = ops.scale_coords(img.shape[2:], pred_kpts, shape)img_path = pathresults.append(Results(orig_img=orig_img,path=img_path,names=model.names,boxes=pred[:, :6],keypoints=pred_kpts))# show
plot_args = {'line_width': None,'boxes': True,'conf': True, 'labels': True}
plot_args['im_gpu'] = img[0]
result = results[0]
plotted_img = result.plot(**plot_args)
cv.imshow('plotted_img', plotted_img)
cv.waitKey(0)
cv.destroyAllWindows()
print()

相关文章:
yolov8-pose 推理流程
目录 一、关键点预测 二、图像预处理 二、推理 三、后处理与可视化 3.1、后处理 3.2、特征点可视化 四、完整pytorch代码 yolov8-pose tensorrt 一、关键点预测 注:本篇只是阐述推理流程,tensorrt实现后续跟进。 yolov8-pose的tensorrt部署代码…...
笔记十七、认识React的路由插件react-router-dom和基本使用
react-router 分类 web使用 react-router-dom native使用 react-router-native anywhere(使用麻烦) react-router 安装 yarn add react-router-dom main.jsx import React from "react"; import ReactDOM from "react-dom/client"…...
CleanMyMac X4.14.5Crack最新Mac电脑清理优化最佳应用
CleanMyMac X 4.14.5是用于清理和优化Mac的最佳应用程序和强大工具。它看起来很棒而且很容易理解。该软件可以清理、保护、优化、稳定和维护您的 Mac 系统。您可以立即删除不必要的、不寻常的、无用的垃圾文件、损坏的文件垃圾,并释放大量内存空间。此外,…...
Linux shell单双引号区别
shell单双引号区别: Shell脚本中很多时候都在用单引号或双引号来框住字符串,但是他们之间是存在区别的 避免踩坑记录… 单引号 单引号中的任何字符都没有特殊含义,即一些转义字符,$ 变量引用都会无效,它只把他们当作一个单纯的…...
ES 8.x开始(docker-compose安装、kibana使用、java操作)
学习文档地址 一、Docker安装 这里使用docker-compose来安装,方便后续迁移,Elasticserach和kibina一起安装。 1、创建安装目录 configdataplugins 2、配置文件 配置文件有两个,一个是ES的配置文件,一个docker-compose的配置文件 …...
有了倾斜摄影,如何搭建一座智慧城市?
随着无人机航测、倾斜摄影等全新一代测绘信息技术方法的发展,可以迅速搜集制作精细化的城市三维模型,搭建城市地理信息基础服务架构。 近期都在重点关注的“智慧城市”究竟是什么,有什么重大作用,同时又面临着什么难关,…...
设计测试用例的具体方法总结
📑打牌 : da pai ge的个人主页 🌤️个人专栏 : da pai ge的博客专栏 ☁️白马沉河共歃誓,怒涛没城亦不悔 ☁️基于需求进行测试用例的设计 基…...
计算机毕业设计|基于SpringBoot+MyBatis框架的仿天猫商城购物系统设计与实现
计算机毕业设计|基于SpringBootMyBatis框架的仿天猫商城购物系统设计与实现 迷你仿天猫商城是一个基于SSM框架的综合性B2C电商平台,需求设计主要参考天猫商城的购物流程:用户从注册开始,到完成登录,浏览商品,加入购物…...
JAXB的XmlValue注解
XmlValue注解用在Java属性、或者方法上。它可以使得映射到XML Schema中的Java类具有一个simpleContent 或者simpleType。 一个Java类中最多只能有一个属性被XmlValue注解。 如果被XmlValue注解的JavaBean属性是Java类中唯一映射到XML的成员,那么该Java类将会被映射…...
Git版本管理(05) git仓库迁移(保留原来记录分支体系)
说明:本文主要是一次git迁移仓库的实战记录。 1 迁移前的准备 仓库迁移前,需要将所有有必要的分支checkout到本地(想要转移到新仓库的分支就都 checkout一遍),接下来将old仓库从远程仓库克隆到本地: $git…...
科技与教育:未来教育的新趋势
在21世纪,科技的快速发展正在深刻地改变教育行业。从在线学习平台到虚拟现实教室,科技为教育带来了革命性的变化。本文将探讨科技如何影响现代教育,并预测未来教育的发展趋势。 一、科技在教育中的应用 在线学习平台:通过平台如C…...
E云管家微信群聊机器人开发
请求URL: http://域名地址/modifyGroupRemark 请求方式: POST 请求头Headers: Content-Type:application/jsonAuthorization:login接口返回 参数: 参数名必选类型说明wId是String登录实例标识chatRo…...
CVE-2023-27524:Apache Superset未授权访问漏洞复现
文章目录 Apache Superset 未授权访问漏洞(CVE-2023-27524)复现0x01 前言0x02 漏洞描述0x03 影响版本0x04 漏洞环境0x05 漏洞复现1.访问漏洞环境2.漏洞复现 0x06 修复建议 Apache Superset 未授权访问漏洞(CVE-2023-27524)复现 0x01 前言 免责声明:请勿利用文…...
机器学习——多元线性回归升维
机器学习升维 升维使用sklearn库实现特征升维实现天猫年度销量预测实现中国人寿保险预测 升维 定义:将原始的数据表示从低维空间映射到高维空间。在线性回归中,升维通常是通过引入额外的特征来实现的,目的是为了更好地捕捉数据的复杂性&#…...
[C/C++]用堆实现TopK算法
一:引入 思考一个问题: 怎么在100个数中找到前10个最大的数? way1: 相信大多数人想到的方法是先把100个数放到数组中从大到小排序,再打印前10个数 way2: 前一文中我们讲了堆结构,那么就可以把这100个数建为大堆,再依次pop10次 这种方法虽然再这个问题下可行,但是如果是再1亿…...
3D点云目标检测:VoxelNex解读(带源码/未完)
VoxelNext 通用vsVoxelNext一、3D稀疏卷积模块1.1、额外的两次下采样1.2、稀疏体素删减 二、高度压缩三、稀疏池化四、head五、waymo数据集训练六、训练自己的数据集bug修改 通用vsVoxelNext 一、3D稀疏卷积模块 1.1、额外的两次下采样 使用通用的3D sparse conv,…...
【Docker】从零开始:11.Harbor搭建企业镜像仓库
【Docker】从零开始:11.Harbor搭建企业镜像仓库 1. Harbor介绍2. 软硬件要求(1). 硬件要求(2). 软件要求 3.Harbor优势4.Harbor的误区5.Harbor的几种安装方式6.在线安装(1).安装composer(2).配置内核参数,开启路由转发(3).下载安装包并解压(4).创建并修改配置文件(5…...
使用conan包 - 工作流程
使用conan包 - 工作流程 主目录 conan Using packages1 Single configuration2 Multi configuration 本文是基于对conan官方文档Workflows的翻译而来, 更详细的信息可以去查阅conan官方文档。 This section shows how to setup your project and manage dependenci…...
【LeeCode】59.螺旋矩阵II
给定一个正整数 n,生成一个包含 1 到 n^2 所有元素,且元素按顺时针顺序螺旋排列的正方形矩阵。 示例: 输入: 3 输出: [ [ 1, 2, 3 ], [ 8, 9, 4 ], [ 7, 6, 5 ] ] 解: class Solution {public int[][] generateMatrix(int n) {int[][] ar…...
rsyslog学习
rsyslog是什么 RSYSLOG(Remote System Logging)是一个开源的日志处理工具,用于在 Linux 和 Unix 系统上收集、处理和转发日志。它是一个健壮且高性能的日志处理程序,可以替换 Syslogd 作为标准的系统日志程序。RSYSLOG 提供了许多…...
Spring Boot+Neo4j知识图谱实战:3步搭建智能关系网络!
一、引言 在数据驱动的背景下,知识图谱凭借其高效的信息组织能力,正逐步成为各行业应用的关键技术。本文聚焦 Spring Boot与Neo4j图数据库的技术结合,探讨知识图谱开发的实现细节,帮助读者掌握该技术栈在实际项目中的落地方法。 …...
AI,如何重构理解、匹配与决策?
AI 时代,我们如何理解消费? 作者|王彬 封面|Unplash 人们通过信息理解世界。 曾几何时,PC 与移动互联网重塑了人们的购物路径:信息变得唾手可得,商品决策变得高度依赖内容。 但 AI 时代的来…...
Angular微前端架构:Module Federation + ngx-build-plus (Webpack)
以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...
NXP S32K146 T-Box 携手 SD NAND(贴片式TF卡):驱动汽车智能革新的黄金组合
在汽车智能化的汹涌浪潮中,车辆不再仅仅是传统的交通工具,而是逐步演变为高度智能的移动终端。这一转变的核心支撑,来自于车内关键技术的深度融合与协同创新。车载远程信息处理盒(T-Box)方案:NXP S32K146 与…...
Git常用命令完全指南:从入门到精通
Git常用命令完全指南:从入门到精通 一、基础配置命令 1. 用户信息配置 # 设置全局用户名 git config --global user.name "你的名字"# 设置全局邮箱 git config --global user.email "你的邮箱example.com"# 查看所有配置 git config --list…...
日常一水C
多态 言简意赅:就是一个对象面对同一事件时做出的不同反应 而之前的继承中说过,当子类和父类的函数名相同时,会隐藏父类的同名函数转而调用子类的同名函数,如果要调用父类的同名函数,那么就需要对父类进行引用&#…...
关于easyexcel动态下拉选问题处理
前些日子突然碰到一个问题,说是客户的导入文件模版想支持部分导入内容的下拉选,于是我就找了easyexcel官网寻找解决方案,并没有找到合适的方案,没办法只能自己动手并分享出来,针对Java生成Excel下拉菜单时因选项过多导…...
通过 Ansible 在 Windows 2022 上安装 IIS Web 服务器
拓扑结构 这是一个用于通过 Ansible 部署 IIS Web 服务器的实验室拓扑。 前提条件: 在被管理的节点上安装WinRm 准备一张自签名的证书 开放防火墙入站tcp 5985 5986端口 准备自签名证书 PS C:\Users\azureuser> $cert New-SelfSignedCertificate -DnsName &…...
CVPR2025重磅突破:AnomalyAny框架实现单样本生成逼真异常数据,破解视觉检测瓶颈!
本文介绍了一种名为AnomalyAny的创新框架,该方法利用Stable Diffusion的强大生成能力,仅需单个正常样本和文本描述,即可生成逼真且多样化的异常样本,有效解决了视觉异常检测中异常样本稀缺的难题,为工业质检、医疗影像…...
从物理机到云原生:全面解析计算虚拟化技术的演进与应用
前言:我的虚拟化技术探索之旅 我最早接触"虚拟机"的概念是从Java开始的——JVM(Java Virtual Machine)让"一次编写,到处运行"成为可能。这个软件层面的虚拟化让我着迷,但直到后来接触VMware和Doc…...
