基于M估计样本一致性算法的点云平面拟合
平面拟合
- 1、算法简介
- 2、参考文献
- 3、实现效果
- 4、相关代码
1、算法简介
RANSAC 是在给定模型和距离阈值 T T T的情况下,通过寻找最小代价 C C C来确定内点数据并拟合模型。如式(1)所示的代价函数,当点到模型的距离 e e e小于阈值 T T T时,该点被判定为内点且权重为0;否则为外点。由于所有内点的权重为0,所以RANSAC选取的最优模型是内点最多且权重和最小的模型。如果用于区分异常值的阈值 T T T过大,则会造成RANSAC 拟合误差增大。
ρ ( e , T ) = { 1 , T ≤ e 0 , T > e (1) \rho(e,T)= \begin{cases} 1,\quad T\leq e\\ 0, \quad T>e \end{cases} \tag{1} ρ(e,T)={1,T≤e0,T>e(1)
MSAC 是RANSAC 的一种改进方法,目的是降低算法对于距离阈值 T T T选取的依赖。修改后的代价函数如式(1)所示,当点到模型的距离 e e e 小于阈值 T T T时,该点被判定为内点且权重为 e e e ;否则为外点且权重为 T T T 。
ρ ( e , T ) = { T , T ≤ e e , T > e (2) \rho(e,T)= \begin{cases} T,\quad T\leq e\\ e, \quad T>e \end{cases} \tag{2} ρ(e,T)={T,T≤ee,T>e(2)
由于使用更加精确的距离表达代价函数,因此,MSAC 不仅可以得到更好的模型,还可以降低阈值的敏感度以及提高收敛速度。利用MSAC 进行局部基准面拟合的具体步骤如下:
- 从数据集中不重复地随机选择用于平面模型拟合的最小数据集 Q Q Q。
- 利用最小二乘法和数据集 Q Q Q拟合平面模型 S S S ,得到模型参数。
- 计算所有点到平面模型 S S S的距离,在允许误差阈值范围内的点标记为“内点”,并计算该平面模型的代价 C i C_i Ci 。
- 比较当前模型的代价 C i C_i Ci 与之前最好模型的代价 C b C_b Cb的大小,记录较小者作为新的最好模型的代价,并记录对应的“内点”和模型参数。
- 重复步骤①-④,直到迭代结束,并得到“内点”数据。
- 利用“内点”数据,通过最小二乘法拟合平面模型,得到最佳的平面模型参数。
2、参考文献
[1] 马新江;岳东杰;沈月千;刘如飞;王旻烨;俞家勇;张春阳. 基于车载激光点云的路面坑槽检测方法 [J/OL]. 中国激光, 1-25[2023-11-25] http://kns.cnki.net/kcms/detail/31.1339.TN.20230817.1814.022.html.
3、实现效果
1、标准模拟数据
2、模拟数据的平面参数
3、添加高斯噪声点
4、高斯噪声点添加结果
5、MSAC拟合结果
平面模型系数coeff(a,b,c,d): 0.00987843 -0.714149 0.699925 17.943
偏差有点大???神奇!!!
4、相关代码
- matlab 点云最小二乘拟合平面(PCA法)
- matlab 点云最小二乘拟合平面(PCA法详细过程版)
- matlab 最小二乘拟合平面并与XOY平面对齐
- Open3D 最小二乘拟合平面(PCA法 python详细过程版)
- Open3D 进阶(12)PCA拟合平面
相关文章:

基于M估计样本一致性算法的点云平面拟合
平面拟合 1、算法简介2、参考文献3、实现效果4、相关代码 1、算法简介 RANSAC 是在给定模型和距离阈值 T T T的情况下,通过寻找最小代价 C C C来确定内点数据并拟合模型。如式(1)所示的代价函数,当点到模型的距离 e e e小于阈值 T…...

【VRTK】【VR开发】【Unity】8-可交互对象
课程配套学习资源下载 https://download.csdn.net/download/weixin_41697242/88485426?spm=1001.2014.3001.5503 【概述】 之前我们只是用了一个简单方块作为可交互对象。其实可交互对象可以有许多细节设置,包括具体抓握物体的哪个点,指定抓握的方向,指定Secondary Acti…...

Huggingface 超详细介绍
Hugging face 起初是一家总部位于纽约的聊天机器人初创服务商,他们本来打算创业做聊天机器人,然后在github上开源了一个Transformers库,虽然聊天机器人业务没搞起来,但是他们的这个库在机器学习社区迅速大火起来。目前已经共享了超…...

pycharm 怎么切换Anaconda简单粗暴
(1)创建一个环境 (2)选择一下自己conda的安装路径中conba.exe (3)选择存在的环境,一般会自动检测到conda创建有哪些环境,导入就行...
笔记二十二、使用路由state进行传递参数
22.1 父组件设置state路由参数 <NavLink toclassify state{{param_C: this.state.name, param_D: this.state.age}} className{this.activeStyle}>classify</NavLink> 父组件 Home/index.jsx import React from "react"; import {NavLink, Outlet} from…...
2023 OI 总结
2023 O I 2023 \space OI 2023 OI ここは总 • 结です ここは总\space• \space结です ここは总 • 结です 我也不知道要写些什么,就随便写了 csp/s第一题10min出ac思路,结果写炸了qwq,被旁边的大哥影响稍微有点大,没调完第一题…...

ESP32-Web-Server编程-HTML 基础
ESP32-Web-Server编程-HTML 基础 概述 HTML(HyperText Markup Language) 是用来描述网页的一种语言。其相关内容存储在前端代码的 .html 文件中。 当浏览器向 web 服务器请求网页时,一个 HTML 文件被发送给浏览器,浏览器解释该文件的内容,…...

【docker】docker安装与优化
目录 一、安装Docker 1、关闭防火墙 2、安装依赖包 3、设置阿里云镜像源 4、安装Docker-CE社区版并设置为开机自启动 5、查看Docker信息 二、设置镜像加速 1、申请加速地址 2、实现加速操作 三、网络优化 1、如何网络优化 2、具体操作 四、docker-server端配置文件…...

https到底把什么加密了?
首先直接说结论, https安全通信模式,是使用TLS加密传输所有的http协议。再重复一遍,是所有! 通常将TLS加密传输http这个通信过程称为https,如果使用协议封装的逻辑结构来表达就是: IP TCP TLS 【 HTTP 】…...
python爬虫防乱码方案
python爬虫防乱码方案 一、chardet库 自动检测编码:使用 Python 库 chardet 可以自动检测文本的编码,然后使用检测到的编码来解码文本。你可以尝试使用 chardet 库来检测编码,然后解码网页内容。 案例 import requests import chardet…...
Java 语言的入门级教程有哪些?
1、Java SE 1.1、Java基础 基础概念/语法:面向对象(继承、封装、多态)基础、包、类、接口、方法、对象、属性、第一个 Java 程序。 数据类型: 1)基本数据类型8种:byte、short、int、long、float、doubl…...
STM32算法
1.通过编码器对返回的错误速度进行滤波 #define MOTOR_BUFF_CIRCLE_SIZE 4 #define STATIC_ENCODER_VALUE 6int32_t LMotor_Encoder_buff[MOTOR_BUFF_CIRCLE_SIZE] {0}; uint8_t LEindex 0; int32_t LMotor_Encoder_last 0; int32_t L_Encoder_change 0;int32_t RMotor_…...
论文阅读 (106):Decoupling maxlogit for out-of-distribution detection (2023 CVPR)
文章目录 1 概述1.1 要点1.2 代码1.3 引用 2 预备知识3 方法3.1 MaxLogit3.2 改进MaxCosine和MaxNorm3.3 DML 1 概述 1.1 要点 题目:解耦最大logit分布外检测 (Decoupling maxlogit for out-of-distribution detection) 方法: 提出了一种心机基于log…...

毅速丨3D打印随形水路为何受到模具制造追捧
在模具制造行业中,随形水路镶件正逐渐成为一种革命性的技术,其提高冷却效率、优化产品设计、降低成本等优点,为模具制造带来了巨大的创新价值。 随形水路是一种根据产品形状定制的冷却水路,其镶件可以均匀地分布在模具的表面或内部…...

【LeetCode:1670. 设计前中后队列 | 数据结构设计】
🚀 算法题 🚀 🌲 算法刷题专栏 | 面试必备算法 | 面试高频算法 🍀 🌲 越难的东西,越要努力坚持,因为它具有很高的价值,算法就是这样✨ 🌲 作者简介:硕风和炜,…...
OpenCV将两张图片拼接成一张图片
OpenCV将两张图片拼接成一张图片 示例代码1示例代码2代码示例3示例代码4 可以用opencv或者numpy的拼接函数,直接将两张图拼接到一起,很简单方便,参考代码2,推荐此方式。新建图片,将两张图片的像素值填充到新图片对应位…...

4G5G智能执法记录仪在保险公司车辆保险远程定损中的应用
4G智能执法记录仪:汽车保险定损的**利器 随着科技的不断进步,越来越多的智能设备应用到日常生活中。而在车辆保险定损领域,4G智能执法记录仪的出现无疑是一大**。它不仅可以实现远程定损,还能实现可视化操作、打印保单以及数据融…...

二十七、RestClient查询文档
目录 一、MatchALL查询 二、Match查询 三、bool查询 四、排序和分页 五、高亮 一、MatchALL查询 Testvoid testMatchAll() throws IOException { // 准备Request对象SearchRequest request new SearchRequest("hotel"); // 准备DSLrequest.source().q…...
百度云Ubuntu22.04
1. download 百度云 2. sudo dpkg -i ***.deb...
解除word文档限制,快速轻松,seo优化。
文章解密、找回和去除word文档密码的安全、简单、高效方法 具体步骤如下:1. 百度搜索【密码帝官网】,2. 点击“立即开始”在用户中心上传需要解密的文件,稍等片刻即可找回密码。这是最简单的办法,无需下载软件,适用于手…...
浅谈 React Hooks
React Hooks 是 React 16.8 引入的一组 API,用于在函数组件中使用 state 和其他 React 特性(例如生命周期方法、context 等)。Hooks 通过简洁的函数接口,解决了状态与 UI 的高度解耦,通过函数式编程范式实现更灵活 Rea…...
vscode里如何用git
打开vs终端执行如下: 1 初始化 Git 仓库(如果尚未初始化) git init 2 添加文件到 Git 仓库 git add . 3 使用 git commit 命令来提交你的更改。确保在提交时加上一个有用的消息。 git commit -m "备注信息" 4 …...

深入浅出Asp.Net Core MVC应用开发系列-AspNetCore中的日志记录
ASP.NET Core 是一个跨平台的开源框架,用于在 Windows、macOS 或 Linux 上生成基于云的新式 Web 应用。 ASP.NET Core 中的日志记录 .NET 通过 ILogger API 支持高性能结构化日志记录,以帮助监视应用程序行为和诊断问题。 可以通过配置不同的记录提供程…...

TDengine 快速体验(Docker 镜像方式)
简介 TDengine 可以通过安装包、Docker 镜像 及云服务快速体验 TDengine 的功能,本节首先介绍如何通过 Docker 快速体验 TDengine,然后介绍如何在 Docker 环境下体验 TDengine 的写入和查询功能。如果你不熟悉 Docker,请使用 安装包的方式快…...
在鸿蒙HarmonyOS 5中实现抖音风格的点赞功能
下面我将详细介绍如何使用HarmonyOS SDK在HarmonyOS 5中实现类似抖音的点赞功能,包括动画效果、数据同步和交互优化。 1. 基础点赞功能实现 1.1 创建数据模型 // VideoModel.ets export class VideoModel {id: string "";title: string ""…...

循环冗余码校验CRC码 算法步骤+详细实例计算
通信过程:(白话解释) 我们将原始待发送的消息称为 M M M,依据发送接收消息双方约定的生成多项式 G ( x ) G(x) G(x)(意思就是 G ( x ) G(x) G(x) 是已知的)࿰…...
TRS收益互换:跨境资本流动的金融创新工具与系统化解决方案
一、TRS收益互换的本质与业务逻辑 (一)概念解析 TRS(Total Return Swap)收益互换是一种金融衍生工具,指交易双方约定在未来一定期限内,基于特定资产或指数的表现进行现金流交换的协议。其核心特征包括&am…...
Axios请求超时重发机制
Axios 超时重新请求实现方案 在 Axios 中实现超时重新请求可以通过以下几种方式: 1. 使用拦截器实现自动重试 import axios from axios;// 创建axios实例 const instance axios.create();// 设置超时时间 instance.defaults.timeout 5000;// 最大重试次数 cons…...

分布式增量爬虫实现方案
之前我们在讨论的是分布式爬虫如何实现增量爬取。增量爬虫的目标是只爬取新产生或发生变化的页面,避免重复抓取,以节省资源和时间。 在分布式环境下,增量爬虫的实现需要考虑多个爬虫节点之间的协调和去重。 另一种思路:将增量判…...
Pinocchio 库详解及其在足式机器人上的应用
Pinocchio 库详解及其在足式机器人上的应用 Pinocchio (Pinocchio is not only a nose) 是一个开源的 C 库,专门用于快速计算机器人模型的正向运动学、逆向运动学、雅可比矩阵、动力学和动力学导数。它主要关注效率和准确性,并提供了一个通用的框架&…...