当前位置: 首页 > news >正文

ElasticSearch之cat anomaly detectors API

curl -X GET "https://localhost:9200/_cat/ml/anomaly_detectors?v=true&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"

执行结果输出如下:

curl -X GET "https://localhost:9200/_cat/ml/anomaly_detectors?v=true&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"
id state data.processed_records model.bytes model.memory_status forecasts.total buckets.count

查看帮助,命令如下:

curl -X GET "https://localhost:9200/_cat/ml/anomaly_detectors?v=true&help=true&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPH=QBE+s5=*lo7F9"

执行结果输出如下:

id                               |                                    | the job_id
state                            | s                                  | the job state
opened_time                      | ot                                 | the amount of time the job has been opened
assignment_explanation           | ae                                 | why the job is or is not assigned to a node
data.processed_records           | dpr,dataProcessedRecords           | number of processed records
data.processed_fields            | dpf,dataProcessedFields            | number of processed fields
data.input_bytes                 | dib,dataInputBytes                 | total input bytes
data.input_records               | dir,dataInputRecords               | total record count
data.input_fields                | dif,dataInputFields                | total field count
data.invalid_dates               | did,dataInvalidDates               | number of records with invalid dates
data.missing_fields              | dmf,dataMissingFields              | number of records with missing fields
data.out_of_order_timestamps     | doot,dataOutOfOrderTimestamps      | number of records handled out of order
data.empty_buckets               | deb,dataEmptyBuckets               | number of empty buckets
data.sparse_buckets              | dsb,dataSparseBuckets              | number of sparse buckets
data.buckets                     | db,dataBuckets                     | total bucket count
data.earliest_record             | der,dataEarliestRecord             | earliest record time
data.latest_record               | dlr,dataLatestRecord               | latest record time
data.last                        | dl,dataLast                        | last time data was seen
data.last_empty_bucket           | dleb,dataLastEmptyBucket           | last time an empty bucket occurred
data.last_sparse_bucket          | dlsb,dataLastSparseBucket          | last time a sparse bucket occurred
model.bytes                      | mb,modelBytes                      | model size
model.memory_status              | mms,modelMemoryStatus              | current memory status
model.bytes_exceeded             | mbe,modelBytesExceeded             | how much the model has exceeded the limit
model.memory_limit               | mml,modelMemoryLimit               | model memory limit
model.by_fields                  | mbf,modelByFields                  | count of 'by' fields
model.over_fields                | mof,modelOverFields                | count of 'over' fields
model.partition_fields           | mpf,modelPartitionFields           | count of 'partition' fields
model.bucket_allocation_failures | mbaf,modelBucketAllocationFailures | number of bucket allocation failures
model.categorization_status      | mcs,modelCategorizationStatus      | current categorization status
model.categorized_doc_count      | mcdc,modelCategorizedDocCount      | count of categorized documents
model.total_category_count       | mtcc,modelTotalCategoryCount       | count of categories
model.frequent_category_count    | mfcc,modelFrequentCategoryCount    | count of frequent categories
model.rare_category_count        | mrcc,modelRareCategoryCount        | count of rare categories
model.dead_category_count        | mdcc,modelDeadCategoryCount        | count of dead categories
model.failed_category_count      | mfcc,modelFailedCategoryCount      | count of failed categories
model.log_time                   | mlt,modelLogTime                   | when the model stats were gathered
model.timestamp                  | mt,modelTimestamp                  | the time of the last record when the model stats were gathered
forecasts.total                  | ft,forecastsTotal                  | total number of forecasts
forecasts.memory.min             | fmmin,forecastsMemoryMin           | minimum memory used by forecasts
forecasts.memory.max             | fmmax,forecastsMemoryMax           | maximum memory used by forecasts
forecasts.memory.avg             | fmavg,forecastsMemoryAvg           | average memory used by forecasts
forecasts.memory.total           | fmt,forecastsMemoryTotal           | total memory used by all forecasts
forecasts.records.min            | frmin,forecastsRecordsMin          | minimum record count for forecasts
forecasts.records.max            | frmax,forecastsRecordsMax          | maximum record count for forecasts
forecasts.records.avg            | fravg,forecastsRecordsAvg          | average record count for forecasts
forecasts.records.total          | frt,forecastsRecordsTotal          | total record count for all forecasts
forecasts.time.min               | ftmin,forecastsTimeMin             | minimum runtime for forecasts
forecasts.time.max               | ftmax,forecastsTimeMax             | maximum run time for forecasts
forecasts.time.avg               | ftavg,forecastsTimeAvg             | average runtime for all forecasts (milliseconds)
forecasts.time.total             | ftt,forecastsTimeTotal             | total runtime for all forecasts
node.id                          | ni,nodeId                          | id of the assigned node
node.name                        | nn,nodeName                        | name of the assigned node
node.ephemeral_id                | ne,nodeEphemeralId                 | ephemeral id of the assigned node
node.address                     | na,nodeAddress                     | network address of the assigned node
buckets.count                    | bc,bucketsCount                    | bucket count
buckets.time.total               | btt,bucketsTimeTotal               | total bucket processing time
buckets.time.min                 | btmin,bucketsTimeMin               | minimum bucket processing time
buckets.time.max                 | btmax,bucketsTimeMax               | maximum bucket processing time
buckets.time.exp_avg             | btea,bucketsTimeExpAvg             | exponential average bucket processing time (milliseconds)
buckets.time.exp_avg_hour        | bteah,bucketsTimeExpAvgHour        | exponential average bucket processing time by hour (milliseconds)

相关资料

  • cat anomaly detectors API
  • Post data to jobs API
  • API conventions
  • HTTP accept header

相关文章:

ElasticSearch之cat anomaly detectors API

curl -X GET "https://localhost:9200/_cat/ml/anomaly_detectors?vtrue&pretty" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPHQBEs5*lo7F9"执行结果输出如下: curl -X GET "https://localhost:9200/_cat/ml/ano…...

Luminar Neo1.16.0(ai智能图像处理)

Luminar Neo是一款ai智能图像编辑软件,它专注于使用人工智能技术来实现对照片的快速、高效和创造性的编辑。 具体来说,Luminar Neo可以自动移除景观或旅行照片中令人分心的元素,例如电话线、电线杆等,从而增强照片的整体质量。同…...

ElasticSearch之cat aliases API

执行aliases命令,如下: curl -X GET "https://localhost:9200/_cat/aliases?pretty&vtrue" --cacert $ES_HOME/config/certs/http_ca.crt -u "elastic:ohCxPHQBEs5*lo7F9"执行结果输出如下: alias index …...

bash编程 数组和for循环的应用

bash编程 数组和for循环的应用 1、问题背景2、bash 定义数组3、for循环遍历输出数组所有元素4、编写bash脚本输出每个端口是否在监听状态 1、问题背景 linux服务器开机后,需要检查一组端口是否在监听,以便判断这些端口对应的服务是否在运行。可以考虑使…...

Python基础:标准库概览

1. 标准库介绍 Python 标准库非常庞大,所提供的组件涉及范围十分广泛,正如以下内容目录所显示的。这个库包含了多个内置模块 (以 C 编写),Python 程序员必须依靠它们来实现系统级功能,例如文件 I/O,此外还有大量以 Pyt…...

C#,《小白学程序》第三课:类class,类的数组及类数组的排序

类class把数值与功能巧妙的进行了结合&#xff0c;是编程技术的主要进步。 下面的程序你可以确立 分数 与 姓名 之间关系&#xff0c;并排序。 1 文本格式 /// <summary> /// 同学信息类 /// </summary> public class Classmate { /// <summary> /…...

建筑结构健康监测系统和传统人工监测的区别

在繁华的城市里&#xff0c;建筑结构作为城市生命线的重要一环&#xff0c;其安全与稳定对城市的运转和居民的生活至关重要。为了更好地守护建筑结构的健康&#xff0c;WITBEE万宾自主研发建筑结构健康监测系统让建筑安全&#xff0c;在上一个台阶。 WITBEE万宾建筑结构健康监测…...

二 使用GPIO的复用功能 利用USART 实现printf()

参考这篇&#xff1a; STM32串口通信详解 1. 关于USART USART ( universal synchronous / asynchronous receiver /transmitter) 是一种串行通讯协议 , 允许设备通过串行端口进行数据传输&#xff0c; USART 能够以同步或者异步的方式进行工作&#xff0c;在实际的运用中&…...

C#中的警告CS0120、CS0176、CS0183、CS0618、CS0649、CS8600、CS8601、CS8602、CS8604、CS8625及处理

目录 一、CS0120 二、CS0176 1.解决前 2.解决后 3.解决办法 三、CS0183 四、CS0618 五、CS8600 六、CS8602 七、CS8622 1. 解决前&#xff1a; 2. 解决后&#xff1a; 3.解决方法&#xff1a; 八、CS8604和CS8625 九、CS0649 十、CS8601 一、CS0120 严重性 代…...

js中声明变量的关键字(const,let,var)

const 特点&#xff1a; const不允许在同一作用域重复声明&#xff0c;块级作用域暂时性死区&#xff0c;在声明之前&#xff0c;该变量是不可用的const声明的是一个只读变量&#xff0c;声明之后不能改变其值&#xff0c;一旦声明必须初始化但是const定义的对象属性是可以修…...

Android13 launcher循环切页

launcher 常规切页&#xff1a;https://blog.csdn.net/a396604593/article/details/125305234 循环切页 我们知道&#xff0c;launcher切页是在packages\apps\Launcher3\src\com\android\launcher3\PagedView.java的onTouchEvent中实现的。 1、滑动限制 public boolean onT…...

Java学习路线第一篇:Java基础(2)

这篇则分享Java学习路线第一part&#xff1a;Java基础&#xff08;2&#xff09; 从看到这篇内容开始&#xff0c;你就是被选定的天命骚年&#xff0c;将承担起学完Java基础的使命&#xff0c;本使命为单向契约&#xff0c;你可选择YES或者选择YES。 具体路线安排&#xff1a…...

网络工程师精华篇,50种网络故障及解决方法大集合

上午好&#xff0c;我的网工朋友。 做网络工程师&#xff0c;自然离不开网络&#xff0c;而日常工作中能搞多少大项目&#xff1f;最常见的其实还是网络故障的处理了。 怎么最高效地排查网络故障&#xff1f;怎么简单几招通网&#xff1f; 今天就从基础的入手&#xff0c;分…...

Unity播放网络视频

using System.Collections; using System.Collections.Generic; using UnityEngine; using Mx.UI; using Mx.Utils; using UnityEngine.UI; using UnityEngine.Video; /// <summary> 视频UI面板 </summary> public class VideoUIForm : BaseUIForm { private …...

SCI一区级 | Matlab实现GWO-CNN-LSTM-selfAttention多变量多步时间序列预测

SCI一区级 | Matlab实现GWO-CNN-LSTM-selfAttention多变量多步时间序列预测 目录 SCI一区级 | Matlab实现GWO-CNN-LSTM-selfAttention多变量多步时间序列预测预测效果基本介绍程序设计参考资料 预测效果 基本介绍 1.Matlab实现GWO-CNN-LSTM-selfAttention灰狼算法优化卷积长短…...

线性分类器--图像表示

整个模型 图像表示 二进制图像 灰度图像 彩色图像 大多数分类算法都要求输入向量&#xff01; rbg的图像矩阵转列向量 大小为 32X32 的话&#xff0c;图像矩阵转列向量是多少维&#xff1f; 32x32x3 3072 维列向量...

车载通信架构 —— 传统车内通信网络FlexRay(较高速度高容错、较灵活拓扑结构)

车载通信架构 —— 传统车内通信网络FlexRay(较高速度高容错、较灵活拓扑结构) 我是穿拖鞋的汉子,魔都中坚持长期主义的汽车电子工程师。 老规矩,分享一段喜欢的文字,避免自己成为高知识低文化的工程师: 屏蔽力是信息过载时代一个人的特殊竞争力,任何消耗你的人和事,…...

如何在Ubuntu的Linux系统中安装MySQL5.7数据库

前往MySQL数据库官网链接地址下载5.7数据库。 MySQL :: Download MySQL Community Server (Archived Versions)使用ssh的可视化工具将下载的mysql-5.7.40-linux-glibc2.12-x86_64.tar.gz文件上传到Linux服务器&#xff0c;并解压文件 tar -zxvf mysql-5.7.40-linux-glibc2.12-x…...

基于Hadoop的区块链海量数据存储的设计与实现

点我完整下载&#xff1a;基于Hadoop的区块链海量数据存储的设计与实现.docx 基于Hadoop的区块链海量数据存储的设计与实现 Design and Implementation of Mass Data Storage for Blockchain based on Hadoop 目录 目录 2 摘要 3 关键词 4 第一章 引言 4 1.1 研究背景 4 1.2 研…...

运行时错误/缺陷到底是什么缺陷

运行时错误(Run-time Error)是一种跟程序运行状态相关的缺陷。这类缺陷不能通过直接禁用相关特性来屏蔽&#xff0c;而是需要通过分析变量的数值状态来发现可能的异常。简单来说&#xff0c;这些缺陷通常只有当程序执行起来以后&#xff0c;才能逐渐暴露出的缺陷&#xff0c;一…...

Flask RESTful 示例

目录 1. 环境准备2. 安装依赖3. 修改main.py4. 运行应用5. API使用示例获取所有任务获取单个任务创建新任务更新任务删除任务 中文乱码问题&#xff1a; 下面创建一个简单的Flask RESTful API示例。首先&#xff0c;我们需要创建环境&#xff0c;安装必要的依赖&#xff0c;然后…...

第25节 Node.js 断言测试

Node.js的assert模块主要用于编写程序的单元测试时使用&#xff0c;通过断言可以提早发现和排查出错误。 稳定性: 5 - 锁定 这个模块可用于应用的单元测试&#xff0c;通过 require(assert) 可以使用这个模块。 assert.fail(actual, expected, message, operator) 使用参数…...

css的定位(position)详解:相对定位 绝对定位 固定定位

在 CSS 中&#xff0c;元素的定位通过 position 属性控制&#xff0c;共有 5 种定位模式&#xff1a;static&#xff08;静态定位&#xff09;、relative&#xff08;相对定位&#xff09;、absolute&#xff08;绝对定位&#xff09;、fixed&#xff08;固定定位&#xff09;和…...

C# 表达式和运算符(求值顺序)

求值顺序 表达式可以由许多嵌套的子表达式构成。子表达式的求值顺序可以使表达式的最终值发生 变化。 例如&#xff0c;已知表达式3*52&#xff0c;依照子表达式的求值顺序&#xff0c;有两种可能的结果&#xff0c;如图9-3所示。 如果乘法先执行&#xff0c;结果是17。如果5…...

Golang——9、反射和文件操作

反射和文件操作 1、反射1.1、reflect.TypeOf()获取任意值的类型对象1.2、reflect.ValueOf()1.3、结构体反射 2、文件操作2.1、os.Open()打开文件2.2、方式一&#xff1a;使用Read()读取文件2.3、方式二&#xff1a;bufio读取文件2.4、方式三&#xff1a;os.ReadFile读取2.5、写…...

基于PHP的连锁酒店管理系统

有需要请加文章底部Q哦 可远程调试 基于PHP的连锁酒店管理系统 一 介绍 连锁酒店管理系统基于原生PHP开发&#xff0c;数据库mysql&#xff0c;前端bootstrap。系统角色分为用户和管理员。 技术栈 phpmysqlbootstrapphpstudyvscode 二 功能 用户 1 注册/登录/注销 2 个人中…...

【LeetCode】算法详解#6 ---除自身以外数组的乘积

1.题目介绍 给定一个整数数组 nums&#xff0c;返回 数组 answer &#xff0c;其中 answer[i] 等于 nums 中除 nums[i] 之外其余各元素的乘积 。 题目数据 保证 数组 nums之中任意元素的全部前缀元素和后缀的乘积都在 32 位 整数范围内。 请 不要使用除法&#xff0c;且在 O…...

工厂方法模式和抽象工厂方法模式的battle

1.案例直接上手 在这个案例里面&#xff0c;我们会实现这个普通的工厂方法&#xff0c;并且对比这个普通工厂方法和我们直接创建对象的差别在哪里&#xff0c;为什么需要一个工厂&#xff1a; 下面的这个是我们的这个案例里面涉及到的接口和对应的实现类&#xff1a; 两个发…...

C++11 constexpr和字面类型:从入门到精通

文章目录 引言一、constexpr的基本概念与使用1.1 constexpr的定义与作用1.2 constexpr变量1.3 constexpr函数1.4 constexpr在类构造函数中的应用1.5 constexpr的优势 二、字面类型的基本概念与使用2.1 字面类型的定义与作用2.2 字面类型的应用场景2.2.1 常量定义2.2.2 模板参数…...

用js实现常见排序算法

以下是几种常见排序算法的 JS实现&#xff0c;包括选择排序、冒泡排序、插入排序、快速排序和归并排序&#xff0c;以及每种算法的特点和复杂度分析 1. 选择排序&#xff08;Selection Sort&#xff09; 核心思想&#xff1a;每次从未排序部分选择最小元素&#xff0c;与未排…...