当前位置: 首页 > news >正文

智能优化算法应用:基于蝙蝠算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于蝙蝠算法无线传感器网络(WSN)覆盖优化 - 附代码

文章目录

  • 智能优化算法应用:基于蝙蝠算法无线传感器网络(WSN)覆盖优化 - 附代码
    • 1.无线传感网络节点模型
    • 2.覆盖数学模型及分析
    • 3.蝙蝠算法
    • 4.实验参数设定
    • 5.算法结果
    • 6.参考文献
    • 7.MATLAB代码

摘要:本文主要介绍如何用蝙蝠算法进行无线传感器网(WSN)覆盖优化。

1.无线传感网络节点模型

本文主要基于0/1模型,进行寻优。在二维平面上传感器节点的感知范围是一个以节点为圆心,半径为 R n R_n Rn的圆形区域,该圆形区域通常被称为该节点的“感知圆盘”, R n R_n Rn称为传感器节点的感知半径,感知半径与节点内置传感器件的物理特性有关,假设节点 n n n的位置坐标为 ( x n , y n ) (x_n,y_n) (xn,yn)在0-1感知模型中,对于平面上任意一点 p ( x p , y p ) p(x_p,y_p) p(xp,yp),则节点 n n n监测到区域内点 p p p的事件发生概率为:
P r ( n , p ) = { 1 , d ( n , p ) ≤ R n 0 , e s l e (1) P_r(n,p)=\begin{cases}1, \,d(n,p)\leq R_n\\ 0,\, esle \end{cases}\tag{1} Pr(n,p)={1,d(n,p)Rn0,esle(1)
其中 d ( n , p ) = ( x n − x p ) 2 + ( y n − y p ) 2 d(n,p)=\sqrt{(x_n-x_p)^2+(y_n-y_p)^2} d(n,p)=(xnxp)2+(ynyp)2 为点和之间的欧式距离。

2.覆盖数学模型及分析

现假定目标监测区域为二维平面,在区域 A r e a Area Area上投放同型结构传感器节点的数目为N,每个节点的位置坐标值假设已被初始化赋值,且节点的感知半径r。传感器节点集则表示为:
N o d e { x 1 , . . . , x N } (2) Node\{x_1,...,x_N\} \tag{2} Node{x1,...,xN}(2)
其中 n o d e i = { x i , y i , r } node_i=\{x_i,y_i,r\} nodei={xi,yi,r},表示以节点 ( x i , y i ) (x_i,y_i) (xi,yi)为圆心,r为监测半径的圆,假定监测区域 A r e a Area Area被数字化离散为 m ∗ n m*n mn个像素点,像素点的坐标为 ( x , y ) (x,y) (x,y),目标像素点与传感器节点间的距离为:
d ( n o d e i , p ) = ( x i − x ) 2 + ( y i − y ) 2 (3) d(node_i,p)=\sqrt{(x_i-x)^2+(y_i-y)^2}\tag{3} d(nodei,p)=(xix)2+(yiy)2 (3)
目标区域内像素点被传感器节点所覆盖的事件定义为 c i c_i ci。则该事件发生的概率 P c i P{c_i} Pci即为像素点 ( x , y ) (x,y) (x,y)被传感器节点 n o d e i node_i nodei所覆盖的概率:
P c o v ( x , y , n o d e i ) = { 1 , i f d ( n o d e i , p ) ≤ r 0 , e s l e (4) P_{cov}(x,y,node_i)=\begin{cases}1, if\,d(node_i,p)\leq r\\ 0,\, esle \end{cases}\tag{4} Pcov(x,y,nodei)={1,ifd(nodei,p)r0,esle(4)
我们将所有的传感器节点在目标监测环境中的区域覆盖率 C o v e r R a t i o CoverRatio CoverRatio定义为传感器节点集的覆盖面积与监测区域的面积之比,如公式所示:
C o v e r R a t i o = ∑ P c o v m ∗ n (5) CoverRatio = \frac{\sum P_{cov}}{m*n}\tag{5} CoverRatio=mnPcov(5)
那我们的最终目标就是找到一组节点使得覆盖率最大。

3.蝙蝠算法

蝙蝠算法原理请参考:https://blog.csdn.net/u011835903/article/details/107937903
该算法是寻找最小值。于是适应度函数定义为未覆盖率最小,即覆盖率最大。如下:
f u n = a r g m i n ( 1 − C o v e r R a t i o ) = a r g m i n ( 1 − ∑ P c o v m ∗ n ) (6) fun = argmin(1 - CoverRatio) = argmin(1-\frac{\sum P_{cov}}{m*n}) \tag{6} fun=argmin(1CoverRatio)=argmin(1mnPcov)(6)

4.实验参数设定

无线传感器覆盖参数设定如下:

%% 设定WNS覆盖参数,
%% 默认输入参数都是整数,如果想定义小数,请自行乘以系数变为整数再做转换。
%% 比如范围1*1,R=0.03可以转换为100*100,R=3;
%区域范围为AreaX*AreaY
AreaX = 100;
AreaY = 100;
N = 20 ;%覆盖节点数
R = 15;%通信半径

蝙蝠算法参数如下:

%% 设定优化参数
pop=30; % 种群数量
Max_iteration=80; %设定最大迭代次数
lb = ones(1,2*N);
ub = [AreaX.*ones(1,N),AreaY.*ones(1,N)];
dim = 2*N;%维度为2N,N个坐标点

5.算法结果

在这里插入图片描述
在这里插入图片描述

从结果来看,覆盖率在优化过程中不断上升,表明蝙蝠算法对覆盖优化起到了优化的作用。

6.参考文献

[1] 史朝亚. 基于PSO算法无线传感器网络覆盖优化的研究[D]. 南京理工大学.

7.MATLAB代码

相关文章:

智能优化算法应用:基于蝙蝠算法无线传感器网络(WSN)覆盖优化 - 附代码

智能优化算法应用:基于蝙蝠算法无线传感器网络(WSN)覆盖优化 - 附代码 文章目录 智能优化算法应用:基于蝙蝠算法无线传感器网络(WSN)覆盖优化 - 附代码1.无线传感网络节点模型2.覆盖数学模型及分析3.蝙蝠算法4.实验参数设定5.算法结果6.参考文献7.MATLAB…...

【栈和队列(1)(逆波兰表达式)】

文章目录 前言什么是栈(Stack)栈方法栈的模拟实现链表也可以实现栈逆波兰表达式逆波兰表达式在栈中怎么使用 前言 什么是栈(Stack) 栈:一种特殊的线性表,其只允许在固定的一端进行插入和删除元素操作。进行数据插入和删除操作的一端称为栈顶&#xff0…...

Blazor Table 实现获取当前选中行的功能

这里需要使用到OnClickRowCallBack事件 后台使用案例...

Flask Echarts 实现历史图形查询

Flask前后端数据动态交互涉及用户界面与服务器之间的灵活数据传递。用户界面使用ECharts图形库实时渲染数据。它提供了丰富多彩、交互性强的图表和地图,能够在网页上直观、生动地展示数据。ECharts支持各种常见的图表类型,包括折线图、柱状图、饼图、散点…...

【漫谈】信创

近些年来,自主创新绝对是高频词汇。 以往是供应链、芯片领域,现在终于到了信息领域。 近期,从上至下、从中央到地方、从政府到国企,各层面、各行业、各领域都在提及“信创”。 信创是个大工程,从计算机通用处理器、…...

linux wget --no-check-certificate

如果您希望每次使用wget命令时都跳过SSL证书检查,可以将–no-check-certificate参数添加到wget的默认配置文件中。 请按照以下步骤进行操作: vi ~/.wgetrc# 插入内容 check_certificate off保存并关闭文件。 现在,wget命令将在每次使用时自…...

mysql命令行连接数据库

有时项目连接不上数据库,报错鉴权失败,先用mysql工具连接下,容易发现问题。 直接输入mysql看是否已安装,如果没有就安装下。 # 注:直接mysql就行,不用-cli也不用-client,也不用-server&#xf…...

计算机丢失vcomp140.dll是什么意思,如何解决与修复(附教程)

vcomp140.dll缺失的5种解决方法以及vcomp140.dll缺失原因 引言: 在日常使用电脑的过程中,我们可能会遇到一些错误提示,其中之一就是“vcomp140.dll缺失”。这个错误提示通常出现在运行某些程序或游戏时,给使用者带来了困扰。本文…...

基于SSM实现的叮当书城

一、系统架构 前端:jsp | jquery | layui 后端:spring | springmvc | mybatis 环境:jdk1.7以上 | mysql | maven 二、代码与数据库 三、功能介绍 01. 系统首页 02. 商品分类 03. 热销 04. 新品 05. 注册 06. 登录 07. 购物车 08. 后台-首页 …...

python基础练习题库实验5

文章目录 题目1代码实验结果题目2代码实验结果题目3代码实验结果![在这里插入图片描述](https://img-blog.csdnimg.cn/direct/6058fb4b66994aed838f920f7fe75706.png)题目4代码实验结果题目总结题目1 编写一个程序,使用while循环语句和字符串格式显示以下精确输出。 例如: …...

JS手写instanceof(内含源码与详解)

前言 本文主要讲解JavaScript如何手写一个简易的instanceof,从而实现数据类型判断的作用.那么好,本文正式开始. instanceof作用 instanceOf的作用就是用来判断JavaScript中的数据类型是否是开发所输入的那种, 语法格式:obj instanceof objtype 左侧就是要判断的数据,而右侧就…...

无公网IP下,如何实现公网远程访问MongoDB文件数据库

文章目录 前言1. 安装数据库2. 内网穿透2.1 安装cpolar内网穿透2.2 创建隧道映射2.3 测试随机公网地址远程连接 3. 配置固定TCP端口地址3.1 保留一个固定的公网TCP端口地址3.2 配置固定公网TCP端口地址3.3 测试固定地址公网远程访问 前言 MongoDB是一个基于分布式文件存储的数…...

初始化的内容写到析构函数中。。。。。。。

大概是,把应该在构造函数中初始化的堆栈窗体代码写到了析构函数中。。。。 不是因为没掌握构造/析构,而是。。。。 检查了四十多分钟没检查出来。。 被自己蠢哭。 #include "widget.h"Widget::Widget(QWidget *parent): QWidget(parent) { }…...

git 使用过程错误集合

文章目录 1、git-credential-manager-core was renamed to git-credential-manager2、credential-manager-core is not a git command. See git --help. 1、git-credential-manager-core was renamed to git-credential-manager 出现以下提示建议尽快更新您的 Git 配置以使用新…...

Lua判断字符串包含另一个字符串

string.find(“原字符串”,“目标字符串”) 返回这个子串的起始索引和结束索引,否则就会返回nil local index sting.find("ABCD",AB) --结果 1 2 if(index ~ nil)return true endstring.match(“原字符串”,“目标字符串”) local result string.mat…...

二叉树之推排序(升序)

目录 1.思路1.1大堆的建立方法1.2排序的方法 2.代码实现以及测试代码 1.思路 如何将一个堆进行排序,并变成升序?首先,如果要完成升序,那我们可以建立一个大堆,因为大堆可以选出一个最大的值放在堆的最上面&#xff0c…...

【Docker项目实战】使用Docker部署Plik临时文件上传系统

【Docker实战项目】使用Docker部署Plik 临时文件上传系统 一、Plik介绍1.1 Plik简介1.2 Plik特点 二、本地环境介绍2.1 本地环境规划2.2 本次实践介绍 三、本地环境检查3.1 检查Docker服务状态3.2 检查Docker版本3.3 检查docker compose 版本 四、下载Plik镜像五、部署Plik临时…...

JsonRPC协议详解(协议介绍、请求示例、响应示例)

JsonRPC协议详解 文章目录 JsonRPC协议详解什么是RPC?什么是JsonRPC?JsonRPC详解请求示例响应示例成功和失败响应示例参数的数据类型 结束语 什么是RPC? RPC(远程过程调用)是一种用于实现分布式系统中不同进程或不同计…...

系列六、Spring整合单元测试

一、概述 Spring中获取bean最常见的方式是通过ClassPathXmlApplicationContext 或者 AnnotationConfigApplicationContext的getBean()方式获取bean,那么在Spring中如何像在SpringBoot中直接一个类上添加个SpringBootTest注解,即可在类中注入自己想要测试…...

如何把 Oracle 19C RAC+DG加入到ORACLE EM 13C监控

平时见ORACLE 19c rac single dg的部署很多了,ORACLE em 13c 的安装也很多了,但如何把手工部署的oracle 19c rac dg 添加到em 13c 中去,让EM13C 来实现对RACDG的监控,主要是DG的EM13C的监控,还没有看到,大部分都是直接…...

谷歌浏览器插件

项目中有时候会用到插件 sync-cookie-extension1.0.0:开发环境同步测试 cookie 至 localhost,便于本地请求服务携带 cookie 参考地址:https://juejin.cn/post/7139354571712757767 里面有源码下载下来,加在到扩展即可使用FeHelp…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式,可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

通过Wrangler CLI在worker中创建数据库和表

官方使用文档:Getting started Cloudflare D1 docs 创建数据库 在命令行中执行完成之后,会在本地和远程创建数据库: npx wranglerlatest d1 create prod-d1-tutorial 在cf中就可以看到数据库: 现在,您的Cloudfla…...

ffmpeg(四):滤镜命令

FFmpeg 的滤镜命令是用于音视频处理中的强大工具,可以完成剪裁、缩放、加水印、调色、合成、旋转、模糊、叠加字幕等复杂的操作。其核心语法格式一般如下: ffmpeg -i input.mp4 -vf "滤镜参数" output.mp4或者带音频滤镜: ffmpeg…...

论文浅尝 | 基于判别指令微调生成式大语言模型的知识图谱补全方法(ISWC2024)

笔记整理:刘治强,浙江大学硕士生,研究方向为知识图谱表示学习,大语言模型 论文链接:http://arxiv.org/abs/2407.16127 发表会议:ISWC 2024 1. 动机 传统的知识图谱补全(KGC)模型通过…...

OpenLayers 分屏对比(地图联动)

注:当前使用的是 ol 5.3.0 版本,天地图使用的key请到天地图官网申请,并替换为自己的key 地图分屏对比在WebGIS开发中是很常见的功能,和卷帘图层不一样的是,分屏对比是在各个地图中添加相同或者不同的图层进行对比查看。…...

Angular微前端架构:Module Federation + ngx-build-plus (Webpack)

以下是一个完整的 Angular 微前端示例,其中使用的是 Module Federation 和 npx-build-plus 实现了主应用(Shell)与子应用(Remote)的集成。 🛠️ 项目结构 angular-mf/ ├── shell-app/ # 主应用&…...

A2A JS SDK 完整教程:快速入门指南

目录 什么是 A2A JS SDK?A2A JS 安装与设置A2A JS 核心概念创建你的第一个 A2A JS 代理A2A JS 服务端开发A2A JS 客户端使用A2A JS 高级特性A2A JS 最佳实践A2A JS 故障排除 什么是 A2A JS SDK? A2A JS SDK 是一个专为 JavaScript/TypeScript 开发者设计的强大库&#xff…...

20个超级好用的 CSS 动画库

分享 20 个最佳 CSS 动画库。 它们中的大多数将生成纯 CSS 代码,而不需要任何外部库。 1.Animate.css 一个开箱即用型的跨浏览器动画库,可供你在项目中使用。 2.Magic Animations CSS3 一组简单的动画,可以包含在你的网页或应用项目中。 3.An…...

AirSim/Cosys-AirSim 游戏开发(四)外部固定位置监控相机

这个博客介绍了如何通过 settings.json 文件添加一个无人机外的 固定位置监控相机,因为在使用过程中发现 Airsim 对外部监控相机的描述模糊,而 Cosys-Airsim 在官方文档中没有提供外部监控相机设置,最后在源码示例中找到了,所以感…...