当前位置: 首页 > news >正文

xv6 磁盘中断流程和启动时调度流程

  • 首发公号:Rand_cs

本文讲述 xv6 中的一些细节流程,还有对之前文中遗留的问题做一些补充说明,主要有以下几个问题:

  1. 一次完整的磁盘中断流程
  2. 进入调度器后的详细流程
  3. sched 函数中的条件判断
  4. scheduler 函数中为什么要周期性关中断

一次完整的磁盘流程

此节讲述完整的磁盘读写流程,读写的流程总体差不多,这里以读为例子,先看“流程图”(看代码时的笔记图)

请添加图片描述

readint $T_SYSCALLsys_readfilereadreadibreadbgetiderwidestart

还是从 A 进程的用户态 read 函数开始:

  1. A 进程用户态调用 read 读取磁盘上的数据
  2. read 通过 INT 0x80 软件中断,通过中断门进入内核,此时会关中断(NOTE 这里我以中断门来实现系统调用为例,会关中断,xv6 源代码是以陷阱门实现系统调用,不会关中断)
  3. 期间多次取锁放锁,进行了多次 pushcli 和 popcli,但总是成对存在,所以目前总体还是处于 0 次 puchcli 状态
  4. 如果磁盘数据没有缓存,调用 iderw 来读写磁盘

A 进程内核态,iderw 函数:

  1. acquire(&idelock),获取磁盘锁,pushcli,cpu.IF = 0,1 次pushcli 状态
  2. 调用 idestart,将要读写的命令,扇区号等信息写进磁盘端口,以此来请求磁盘操作。写磁盘端口是通过 out 指令实现的。向磁盘发送命令后,磁盘就会工作,磁盘完成工作后就会向 cpu 发送中断信号。
  3. A 进程调用 sleep 等待磁盘操作完成。在 sleep 函数中,获取 ptable.lock,释放 idelock,然后调用 sched 让出

by the way,这里补充说明 sched 函数中的条件检查,之前的文章都一笔带过了:

void sched(void)   //让出CPU,重新调度
{int intena;struct proc *p = myproc();if(!holding(&ptable.lock))      // 必须持有 ptable.lockpanic("sched ptable.lock");if(mycpu()->ncli != 1)          // 1 次 pushcli 状态panic("sched locks");if(p->state == RUNNING)         // 只可能是 SLEEPING、RUNNABLE、ZOMBIE 三种状态之一panic("sched running");if(readeflags()&FL_IF)          // 此时肯定处于关中断状态(通过中断门进入内核会关中断,1次pushcli状态也应该对应关中断状态)panic("sched interruptible");intena = mycpu()->intena;swtch(&p->context, mycpu()->scheduler);mycpu()->intena = intena;
}

sched 函数中有 4 个条件检查:

  1. xv6 是个多 CPU 多任务系统,在 sched 任务调度的时候,需要持有 ptable.lock,不然进程的上下文会发生紊乱,举个简单的例子,A 时间片到了,先将 A 的状态设置为 RUNNABLE,然后调用 sched 让出 CPU,如果此时没有持有 ptable.lock,那么 A 进程便可能在另一个 CPU 上被调度,那么便出现一个进程在两 CPU 上运行的情况,Error
  2. 在 sched 函数中应当只有 1 次 pushcli 状态,这个条件检查感觉有点难以理解。从实践看代码确实,不管从哪条路径到达 sched 函数,都应该只有 1 次 pushcli,这是获取 ptable.lock 的锁造成的。从个人理解上说,sched 是为了调度进程,是要从 A 进程到 B 进程,那么 A 进程的开关中断(pushcli popcli 次数)不应该带入 B 进程,除了一种情况——调度,那就是 A 进程获取 ptable.lock 但是要在 B 进程中释放 ptable.lock。所以 sched 中应当只有 1 次 pushcli
  3. 在真正切换进程上下文之前,会首先修改旧进程的状态,在 xv6 中是 SLEEPING、RUNNABLE、ZOMBIE 三种之一
  4. 在 sched 中理应处于关中断状态,如果是通过中断门进入内核的,那么本身就处于关中断。如果是通过陷阱门进入内核,那么有 1 次 pushcli,也会处于关中断状态

回到磁盘中断,当 A 进程调用 sched 切换到 B 进程,这里假如 B 进程最初是因为时间片到了,调用 yield->sched->swtch 主动让出 CPU 的,则 B 进程的流程如下:

  1. 回到 B 进程 sched 函数中的 swtch 下一条指令处,然后释放 ptable.lock,此时 cpu.IF = 0,0 次 pushcli 状态,cpu.IF = 0 仍然处于关中断状态 是因为 A 进程通过中断门进入内核关中断造成的
  2. B 进程经过一些列指令后,最后执行 iret 返回 B 进程的用户态,此时会开中断
  3. NOTE,这里我们假设 CPU 内部逻辑:每条指令执行后都会检查是否有中断发生,如果有中断发生且开中断的情况下,则去处理中断。再假设,此前的磁盘操作已完成,已经向 CPU 发生了中断信号。但是在此之前 CPU 一直没有去处理中断,是因为在此之前一直处于关中断状态。
  4. Now,CPU 处于开中断状态,继续执行 B 进程的指令,开中断后的第一条指令执行完成后,检查是否有中断发生,发现有磁盘中断,那么中断 B 进程,通过中断门进入内核(该过程关中断)
  5. 执行磁盘中断处理程序,也就是执行 insl 指令从 0x1f0 端口将磁盘数据读取到内存,然后唤醒等待该磁盘事件的进程,在我们的例子当中就是 A 进程
  6. 中断执行完成,iret 返回 B 进程用户态(该过程开中断)
  7. 继续执行 B 进程的指令
  8. 时钟中断 B 进程,再次通过中断门进入内核(关中断),发现 B 进程的时间片到了,那么调用 yield->sched->swtch 重新调度进程,这里假设调度到 A 进程

回到 A 进程的内核态,准确来说回到 iderw->sleep->sched->swtch 的下一条指令

  1. A 进程执行 release(ptable.lock)、acquire(idelock)、release(idelock),此时状态: cpu.IF = 0,0 次 pushcli
  2. 将磁盘中断获取的数据 cp 到 A 进程内核态
  3. A 进程层层返回
  4. 最后 iret 返回 A 进程用户态(开中断)

系统启动进入调度器后的流程

请添加图片描述

mainuserinit //准备好 initcode 进程mpmainscheduler  // 进入调度器

调度器上下文:

  1. 第一次进入 scheduler,for 循环找到 RUNNABLE 进程,目前就只有一个 initcode 进程为 RUNNABLE 进程,找到并切换上下文到 initcode 进程

initcode 进程上下文:

  1. 执行 forkret 函数,因为是第一次执行,会首先执行 iinit 来初始化根文件系统
  2. 执行 readsb 从磁盘中读取超级块数据,期间会使用 iderw 读写磁盘,具体流程见第一小节。总之,initcode 进程会调用 sleep 函数让出 CPU 来等待磁盘操作
  3. 在 sleep->sched->swtch 中再次切换上下文到 调度器上下文

调度器上下文:

  1. 切换到内核页表,然后遍历任务队列,寻找 RUNNABLE 进程,但是目前只有一个且处于 SLEEPING 状态的进程,所以这里调度器会轮询空转,直到磁盘中断处理完成,initcode 进程被唤醒。
  2. 再次切换上下文到 initcode 进程

initcode 进程上下文

  1. 回到 forkret->iinit->readsb->bread->iderw->sleep->sched->swtch 的下一条指令处,然后层层返回到 forkret
  2. 再执行 initlog 恢复日志,这里会涉及到两次磁盘读写,道理同上,不再赘述
  3. 第 4 次调度到 initcode 进程后,forkret 函数执行完毕,再执行 trapret 函数,其中包含了 iret 指令,至此回到用户态,开始执行 initcode 进程的逻辑

by the way again,这里解释为什么在 scheduler 函数中需要周期性的开中断:

void scheduler(void)
{for(;;){sti();    // 周期性开中断for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){  //循环找一个RUNNABLE进程...}}
}

进入调度器上下文有两条路径:

  1. 系统刚启动进入 scheduler
  2. sched 函数中 swtch 上下文到调度器

回想前面说的 sched 函数,在它切换到新进程并返回用户态之前理应都处于关中断的状态。而一直处于关中断且没有开中断的话会引发死循环。

举个例子,假设没有周期性的开中断,也就是 scheduler 代码长这样的话:

void scheduler(void)
{for(;;){// 遍历进程列表,寻找 RUNNABLE 进程for(p = ptable.proc; p < &ptable.proc[NPROC]; p++){...}}
}

假如当前系统只有一个进程(shell进程),它需要等待键盘输入而被阻塞(state==SLEEPING),内层循环是找不到 RUNNABLE 进程的,便回到外层循环,外层循环现在相当于什么也不做,便又再次进入内层循环。如此下来死循环。

而加入周期性的开中断后,CPU 便会响应中断。当有键盘输入时,中断当前的调度上下文而进入中断上下文,执行键盘中断处理程序,唤醒 shell 进程,中断处理完成后再回到调度上下文。此时内层循环便能找到一个 RUNNABLE 进程,然后切换到它的上下文执行。

本文就先补充这么多吧,这补充系列的文章是之前做了关于 xv6、nemu 的项目,将 xv6 启动到 nemu 上,这需要对很多地方细扣,对 xv6 的理解又增加了一些,分享出来。

停更这么久啊,一直再忙工作,学习新的东西,时间不是很多,当然也有懒的原因,后面慢慢克服回归吧。OK,那有什么问题欢迎来讨论交流。

  • 首发公号:Rand_cs

相关文章:

xv6 磁盘中断流程和启动时调度流程

首发公号&#xff1a;Rand_cs 本文讲述 xv6 中的一些细节流程&#xff0c;还有对之前文中遗留的问题做一些补充说明&#xff0c;主要有以下几个问题&#xff1a; 一次完整的磁盘中断流程进入调度器后的详细流程sched 函数中的条件判断scheduler 函数中为什么要周期性关中断 …...

Spring Security 6.x 系列(6)—— 显式设置和修改登录态信息

一、前言 此篇是对上篇 Spring Security 6.x 系列&#xff08;5&#xff09;—— Servlet 认证体系结构介绍 中4.9章节显式调用SecurityContextRepository#saveContext进行详解分析。 二、设置和修改登录态 2.1 登录态存储形式 使用Spring Security框架&#xff0c;认证成功…...

Linux的软件安装

Linux的软件安装 1、rpm软件安装包 RPM&#xff08;RedHat Package Manager&#xff09;安装管理 ​ 这个机制最早是由Red Hat开发出来,后来实在很好用,因此很多 distributions&#xff08;发行版&#xff09;就使用这个机制来作为软件安装的管理方式 。包括Fedora,CentOS,S…...

443. 压缩字符串

这篇文章会收录到 : 算法通关村第十二关-黄金挑战字符串冲刺题-CSDN博客 压缩字符串 描述 : 给你一个字符数组 chars &#xff0c;请使用下述算法压缩&#xff1a; 从一个空字符串 s 开始。对于 chars 中的每组 连续重复字符 &#xff1a; 如果这一组长度为 1 &#xff0c;…...

Python面经【6】

Python面经【6】 一、什么是Python的自省机制二、关于Python程序的运行方面&#xff0c;有什么手段可以提升性能三、dict的item()和iteritems()的不同四、说明一个os.path和sys.path分别代表什么五、说一下字典和json的区别六、什么是可变、不可变类型 一、什么是Python的自省机…...

2020年6月9日 Go生态洞察:VS Code Go扩展加入Go项目

&#x1f337;&#x1f341; 博主猫头虎&#xff08;&#x1f405;&#x1f43e;&#xff09;带您 Go to New World✨&#x1f341; &#x1f984; 博客首页——&#x1f405;&#x1f43e;猫头虎的博客&#x1f390; &#x1f433; 《面试题大全专栏》 &#x1f995; 文章图文…...

C语言错误处理之“非局部跳转<setjmp.h>头文件”

目录 前言 setjmp宏 longjmp函数 使用方法&#xff1a; 实例&#xff1a;测试setjmp与longjmp的使用 前言 通常情况下&#xff0c;函数会返回到它被调用的位置&#xff0c;我们无法使用goto语句改变它的返回的方向&#xff0c;因为goto语句只能跳转到同一函数内的某个标号…...

【SpringCloud】微服务架构设计模式

一、聚合气微服务设计模式 最常见、最简单的设计模式&#xff0c;效果如图所示&#xff1a; 聚合器调用多个服务实现应用程序所需的功能 它可以是一个简单的 Web 页面&#xff0c;将检索到的数据进行处理并展示&#xff0c;也可以是一个更高层次的组合微服务&#xff0c;对…...

【EI会议征稿】第三届航空航天工程与系统国际研讨会(ISAES 2024)

第三届航空航天工程与系统国际研讨会(ISAES 2024) 2024 3rd International Symposium on Aerospace Engineering and Systems 第三届航空航天工程与系统国际研讨会将于2024年3月22-24日在南京召开&#xff01;会议紧密聚焦“航空航天工程”领域的热点和难点问题&#xff0c;…...

唯创知音WT588F02A-16S录音语音芯片在宠物喂食器中的应用:小芯片,大功能

在现代社会中&#xff0c;宠物已经成为人们生活中的一部分&#xff0c;而宠物喂食器作为宠物养护的重要工具&#xff0c;也越来越受到人们的关注。为了满足人们对宠物喂食器的多样化需求&#xff0c;唯创知音的WT588F02A-16S录音芯片在其中发挥着重要作用。 唯创知音的WT588F0…...

SELinux零知识学习三十七、SELinux策略语言之约束(1)

接前一篇文章:SELinux零知识学习三十六、SELinux策略语言之角色和用户(7) 四、SELinux策略语言之约束 SELinux对策略允许的访问提供了更严格的约束机制,不管策略的allow规则如何。 1. 近距离查看访问决定算法 为了理解约束的用途,先来看一下SELinux Linux安全模块(Lin…...

sqli-labs靶场详解(less25/25a-less28/28a)

在SQL注入过程中难点就是判断注入点 只要注入点确定了 获取数据库数据的过程就是复制 从这关开始 只进行判断注入点了和代码逻辑分析了 因为注入操作太简单了&#xff08;不演示了&#xff09; 目录 less-25 less-25a less-26 less-26a less-27 less-27a less-28 less-…...

如何优化 Elasticsearch 查询性能

优化 Elasticsearch 查询性能需要从多个方面入手。通过合理的索引设计、优化查询语句、优化硬件资源和集群架构等方面的优化&#xff0c;可以显著提高 Elasticsearch 的查询性能。 1.索引设计优化 良好的索引设计是优化 Elasticsearch 查询性能的关键。可以通过以下几个方面来…...

成功的蓝图:实现长期成长与卓越表现的 6 项策略

能在收入和利润上持续领先同行的公司寥寥无几&#xff0c;不到四分之一。McKinsey的最新研究揭示了这些增长标杆公司与众不同的六大心态和策略。过度谨慎的公司&#xff0c;尤其在动荡时期&#xff0c;也许能捱过当下&#xff0c;但往往无法发掘全部潜力。考虑到近五年历经前所…...

【JavaEE初阶】认识线程、创建线程

1. 认识线程&#xff08;Thread&#xff09; 1.1 概念 1) 线程是什么 一个线程就是一个 "执行流". 每个线程之间都可以按照顺序执行自己的代码. 多个线程之间 "同时" 执行着多份代码. 举例&#xff1a; 还是回到我们之前的银⾏的例⼦中。之前我们主要描…...

uniapp中uni.navigateBack返回后刷新页面数据

文章目录 一、前言1.1、[uni.navigateBack](https://uniapp.dcloud.net.cn/api/router.html#navigateback) 二、方法2.1、父页面设置钩子函数onBackPress2.2、uni.$emit和uni.$on监听通知数据变更2.2.1、子页面2.2.2、父页面 2.3、onShow钩子函数处理数据2.3.1、子页面2.3.2、父…...

sed文本 免交互

目录 什么是sed 概念 格式 基本用法 命令的选项 打印第三行 打印日志文件 打印奇数行 打印偶数行 第三行退出 删除第三行 sed在不打开文件的情况下修改文件内容 在后面添加 选项a 在字符中间添加 \n 实现追加换行 全部追加 在前面插入 选项i 替换 选项c …...

轻巧高效的剃须好工具,DOCO黑刃电动剃须刀上手

剃须刀大家都用过&#xff0c;我比较喜欢电动剃须刀&#xff0c;尤其是多刀头的悬浮剃须刀&#xff0c;感觉用起来很方便&#xff0c;剃须效率也很高。最近我在用一款DOCO小蔻的黑刃电动剃须刀&#xff0c;这款剃须刀轻巧易用&#xff0c;而且性价比超高。 相比于同类产品&…...

第15关 K8s HPA:自动水平伸缩Pod,实现弹性扩展和资源优化

------> 课程视频同步分享在今日头条和B站 大家好&#xff0c;我是博哥爱运维&#xff0c;这节课带来k8s的HPA 自动水平伸缩pod&#xff08; 视频后面有彩蛋 : ) &#xff09;。 我们知道&#xff0c;初始Pod的数量是可以设置的&#xff0c;同时业务也分流量高峰和低峰&a…...

接口测试工具(Jmeter)必学技巧

安装 使用JMeter的前提需要安装JDK&#xff0c;需要JDK1.7以上版本 目前在用的是JMeter5.2版本&#xff0c;大家可自行下载解压使用 运行 进入解压路径如E: \apache-jmeter-5.2\bin&#xff0c;双击jmeter.bat启动运行 启动后默认为英文版本&#xff0c;可通过Options – Choos…...

生成xcframework

打包 XCFramework 的方法 XCFramework 是苹果推出的一种多平台二进制分发格式&#xff0c;可以包含多个架构和平台的代码。打包 XCFramework 通常用于分发库或框架。 使用 Xcode 命令行工具打包 通过 xcodebuild 命令可以打包 XCFramework。确保项目已经配置好需要支持的平台…...

从零实现富文本编辑器#5-编辑器选区模型的状态结构表达

先前我们总结了浏览器选区模型的交互策略&#xff0c;并且实现了基本的选区操作&#xff0c;还调研了自绘选区的实现。那么相对的&#xff0c;我们还需要设计编辑器的选区表达&#xff0c;也可以称为模型选区。编辑器中应用变更时的操作范围&#xff0c;就是以模型选区为基准来…...

【解密LSTM、GRU如何解决传统RNN梯度消失问题】

解密LSTM与GRU&#xff1a;如何让RNN变得更聪明&#xff1f; 在深度学习的世界里&#xff0c;循环神经网络&#xff08;RNN&#xff09;以其卓越的序列数据处理能力广泛应用于自然语言处理、时间序列预测等领域。然而&#xff0c;传统RNN存在的一个严重问题——梯度消失&#…...

定时器任务——若依源码分析

分析util包下面的工具类schedule utils&#xff1a; ScheduleUtils 是若依中用于与 Quartz 框架交互的工具类&#xff0c;封装了定时任务的 创建、更新、暂停、删除等核心逻辑。 createScheduleJob createScheduleJob 用于将任务注册到 Quartz&#xff0c;先构建任务的 JobD…...

最新SpringBoot+SpringCloud+Nacos微服务框架分享

文章目录 前言一、服务规划二、架构核心1.cloud的pom2.gateway的异常handler3.gateway的filter4、admin的pom5、admin的登录核心 三、code-helper分享总结 前言 最近有个活蛮赶的&#xff0c;根据Excel列的需求预估的工时直接打骨折&#xff0c;不要问我为什么&#xff0c;主要…...

大数据学习(132)-HIve数据分析

​​​​&#x1f34b;&#x1f34b;大数据学习&#x1f34b;&#x1f34b; &#x1f525;系列专栏&#xff1a; &#x1f451;哲学语录: 用力所能及&#xff0c;改变世界。 &#x1f496;如果觉得博主的文章还不错的话&#xff0c;请点赞&#x1f44d;收藏⭐️留言&#x1f4…...

JavaScript基础-API 和 Web API

在学习JavaScript的过程中&#xff0c;理解API&#xff08;应用程序接口&#xff09;和Web API的概念及其应用是非常重要的。这些工具极大地扩展了JavaScript的功能&#xff0c;使得开发者能够创建出功能丰富、交互性强的Web应用程序。本文将深入探讨JavaScript中的API与Web AP…...

搭建DNS域名解析服务器(正向解析资源文件)

正向解析资源文件 1&#xff09;准备工作 服务端及客户端都关闭安全软件 [rootlocalhost ~]# systemctl stop firewalld [rootlocalhost ~]# setenforce 0 2&#xff09;服务端安装软件&#xff1a;bind 1.配置yum源 [rootlocalhost ~]# cat /etc/yum.repos.d/base.repo [Base…...

消防一体化安全管控平台:构建消防“一张图”和APP统一管理

在城市的某个角落&#xff0c;一场突如其来的火灾打破了平静。熊熊烈火迅速蔓延&#xff0c;滚滚浓烟弥漫开来&#xff0c;周围群众的生命财产安全受到严重威胁。就在这千钧一发之际&#xff0c;消防救援队伍迅速行动&#xff0c;而豪越科技消防一体化安全管控平台构建的消防“…...

Spring AOP代理对象生成原理

代理对象生成的关键类是【AnnotationAwareAspectJAutoProxyCreator】&#xff0c;这个类继承了【BeanPostProcessor】是一个后置处理器 在bean对象生命周期中初始化时执行【org.springframework.beans.factory.config.BeanPostProcessor#postProcessAfterInitialization】方法时…...